BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35379558)

  • 21. The Functions and Mechanisms of Translatable Circular RNAs.
    Liu C; Wu X; Gokulnath P; Li G; Xiao J
    J Pharmacol Exp Ther; 2023 Jan; 384(1):52-60. PubMed ID: 35609922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complexity of the translation ability of circRNAs.
    Granados-Riveron JT; Aquino-Jarquin G
    Biochim Biophys Acta; 2016 Oct; 1859(10):1245-51. PubMed ID: 27449861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches.
    Hwang JY; Kook TL; Paulus SM; Park JW
    Curr Bioinform; 2024; 19(1):3-13. PubMed ID: 38500957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Circular RNA-encoded peptides and proteins: implications to cancer].
    Ke SA; Zhao S; Liu Y; Zhuo Q; Tong X; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Sep; 38(9):3131-3140. PubMed ID: 36151789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Split NanoLuc Reporter Quantitatively Measures Circular RNA IRES Translation.
    Sehta P; Wilhelm AM; Lin SJ; Urman MA; MacNeil HA; Fuchs G
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The new function of circRNA: translation.
    Shi Y; Jia X; Xu J
    Clin Transl Oncol; 2020 Dec; 22(12):2162-2169. PubMed ID: 32449127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance.
    Jodoin R; Carrier JC; Rivard N; Bisaillon M; Perreault JP
    Nucleic Acids Res; 2019 Nov; 47(19):10247-10266. PubMed ID: 31504805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation.
    Elango N; Li Y; Shivshankar P; Katz MS
    J Cell Biochem; 2006 Nov; 99(4):1108-21. PubMed ID: 16767703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expanded regulation of circular RNA translation.
    Liu CX; Chen LL
    Mol Cell; 2021 Oct; 81(20):4111-4113. PubMed ID: 34686312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in the protein‑encoding functions of circular RNAs associated with cancer (Review).
    Yuan W; Zhang X; Cong H
    Oncol Rep; 2023 Aug; 50(2):. PubMed ID: 37449515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Newly discovered mechanisms that mediate tumorigenesis and tumour progression: circRNA-encoded proteins.
    Wu C; Wang S; Cao T; Huang T; Xu L; Wang J; Li Q; Wang Y; Qian L; Xu L; Xia Y; Huang X
    J Cell Mol Med; 2023 Jun; 27(12):1609-1620. PubMed ID: 37070530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circular RNAs' cap-independent translation protein and its roles in carcinomas.
    He L; Man C; Xiang S; Yao L; Wang X; Fan Y
    Mol Cancer; 2021 Sep; 20(1):119. PubMed ID: 34526007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering circular RNA for enhanced protein production.
    Chen R; Wang SK; Belk JA; Amaya L; Li Z; Cardenas A; Abe BT; Chen CK; Wender PA; Chang HY
    Nat Biotechnol; 2023 Feb; 41(2):262-272. PubMed ID: 35851375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes.
    Hanson PJ; Ye X; Qiu Y; Zhang HM; Hemida MG; Wang F; Lim T; Gu A; Cho B; Kim H; Fung G; Granville DJ; Yang D
    Cell Death Differ; 2016 May; 23(5):828-40. PubMed ID: 26586572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Circular RNA-Encoded Proteins in Gastrointestinal Cancer:A Review].
    Jiang J; Luo Z; Zhang HL; Qiu ZJ; Huang C
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2024 Feb; 46(1):72-81. PubMed ID: 38433635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circular RNA Translation in Cardiovascular Diseases.
    Wang L; Cui X; Jiang F; Hu Y; Wan W; Li G; Lin Y; Xiao J
    Curr Genomics; 2023 Oct; 24(2):66-71. PubMed ID: 37994328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma.
    Hu F; Peng Y; Chang S; Luo X; Yuan Y; Zhu X; Xu Y; Du K; Chen Y; Deng S; Yu F; Feng X; Fan X; Ashktorab H; Smoot D; Meltzer SJ; Li S; Wei Y; Zhang X; Jin Z
    Cancer Lett; 2022 Oct; 545():215826. PubMed ID: 35839920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions.
    Wang X; Ma R; Zhang X; Cui L; Ding Y; Shi W; Guo C; Shi Y
    Mol Cancer; 2021 Sep; 20(1):121. PubMed ID: 34560891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cis-regulatory RNA elements that regulate specialized ribosome activity.
    Xue S; Barna M
    RNA Biol; 2015; 12(10):1083-7. PubMed ID: 26327194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells.
    Zhang J; Zhang X; Li C; Yue L; Ding N; Riordan T; Yang L; Li Y; Jen C; Lin S; Zhou D; Chen F
    RNA Biol; 2019 Feb; 16(2):220-232. PubMed ID: 30614753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.