These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 35379961)

  • 1. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
    Mok BY; Kotrys AV; Raguram A; Huang TP; Mootha VK; Liu DR
    Nat Biotechnol; 2022 Sep; 40(9):1378-1387. PubMed ID: 35379961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants.
    Zhang D; Pries V; Boch J
    BMC Biol; 2024 Apr; 22(1):99. PubMed ID: 38679734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs.
    Castillo SR; Simone BW; Clark KJ; Devaux P; Ekker SC
    Hum Gene Ther; 2024 Oct; 35(19-20):798-813. PubMed ID: 39212664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced C-To-T and A-To-G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED.
    Wei Y; Jin M; Huang S; Yao F; Ren N; Xu K; Li S; Gao P; Zhou Y; Chen Y; Yang H; Li W; Xu C; Zhang M; Wang X
    Adv Sci (Weinh); 2024 Jan; 11(3):e2304113. PubMed ID: 37984866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility.
    Guo J; Yu W; Li M; Chen H; Liu J; Xue X; Lin J; Huang S; Shu W; Huang X; Liu Z; Wang S; Qiao Y
    Mol Cell; 2023 May; 83(10):1710-1724.e7. PubMed ID: 37141888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
    Willis JCW; Silva-Pinheiro P; Widdup L; Minczuk M; Liu DR
    Nat Commun; 2022 Nov; 13(1):7204. PubMed ID: 36418298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
    Lee S; Lee H; Baek G; Kim JS
    Nat Biotechnol; 2023 Mar; 41(3):378-386. PubMed ID: 36229610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing.
    Mi L; Shi M; Li YX; Xie G; Rao X; Wu D; Cheng A; Niu M; Xu F; Yu Y; Gao N; Wei W; Wang X; Wang Y
    Nat Commun; 2023 Feb; 14(1):874. PubMed ID: 36797253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library.
    Sun H; Wang Z; Shen L; Feng Y; Han L; Qian X; Meng R; Ji K; Liang D; Zhou F; Lou X; Zhang J; Shen B
    Nat Commun; 2023 Oct; 14(1):6625. PubMed ID: 37857619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs.
    Castillo SR; Simone BW; Clark KJ; Devaux P; Ekker SC
    bioRxiv; 2024 May; ():. PubMed ID: 38798498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
    Cho SI; Lee S; Mok YG; Lim K; Lee J; Lee JM; Chung E; Kim JS
    Cell; 2022 May; 185(10):1764-1776.e12. PubMed ID: 35472302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering RsDddA as mitochondrial base editor with wide target compatibility and enhanced activity.
    Cheng K; Li C; Jin J; Qian X; Guo J; Shen L; Dai Y; Zhang X; Li Z; Guan Y; Zhou F; Tang J; Zhang J; Shen B; Lou X
    Mol Ther Nucleic Acids; 2023 Dec; 34():102028. PubMed ID: 37744175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial base editor induces substantial nuclear off-target mutations.
    Lei Z; Meng H; Liu L; Zhao H; Rao X; Yan Y; Wu H; Liu M; He A; Yi C
    Nature; 2022 Jun; 606(7915):804-811. PubMed ID: 35551512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases.
    Lee S; Lee H; Baek G; Namgung E; Park JM; Kim S; Hong S; Kim JS
    Genome Biol; 2022 Oct; 23(1):211. PubMed ID: 36224582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in mitochondrial DNA base editing technology.
    Song RJ; Han L; Sun HF; Shen B
    Yi Chuan; 2023 Aug; 45(8):632-642. PubMed ID: 37609815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous evolution of base editors with expanded target compatibility and improved activity.
    Thuronyi BW; Koblan LW; Levy JM; Yeh WH; Zheng C; Newby GA; Wilson C; Bhaumik M; Shubina-Oleinik O; Holt JR; Liu DR
    Nat Biotechnol; 2019 Sep; 37(9):1070-1079. PubMed ID: 31332326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 19. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base editing in human cells with monomeric DddA-TALE fusion deaminases.
    Mok YG; Lee JM; Chung E; Lee J; Lim K; Cho SI; Kim JS
    Nat Commun; 2022 Jul; 13(1):4038. PubMed ID: 35821233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.