These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35380153)

  • 1. Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers.
    Bauman GE; Koch JA; White TJ
    Soft Matter; 2022 Apr; 18(16):3168-3176. PubMed ID: 35380153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of oligomer melts in the nematic and isotropic states.
    Bauman GE; White TJ
    Soft Matter; 2023 Nov; 19(45):8882-8888. PubMed ID: 37955179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Orientation in Liquid Crystalline Elastomers Prepared with Intra-Mesogenic Supramolecular Bonds.
    Lewis KL; Herbert KM; Matavulj VM; Hoang JD; Ellison ET; Bauman GE; Herman JA; White TJ
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3467-3475. PubMed ID: 36598490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers.
    Javed M; Corazao T; Saed MO; Ambulo CP; Li Y; Kessler MR; Ware TH
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35087-35096. PubMed ID: 35866446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking.
    Lee J; Guo Y; Choi YJ; Jung S; Seol D; Choi S; Kim JH; Kim Y; Jeong KU; Ahn SK
    Soft Matter; 2020 Mar; 16(11):2695-2705. PubMed ID: 32057062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers.
    Mistry D; Traugutt NA; Sanborn B; Volpe RH; Chatham LS; Zhou R; Song B; Yu K; Long KN; Yakacki CM
    Nat Commun; 2021 Nov; 12(1):6677. PubMed ID: 34795228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers.
    Ustunel S; Pandya H; Prévôt ME; Pegorin G; Shiralipour F; Paul R; Clements RJ; Khabaz F; Hegmann E
    Macromol Rapid Commun; 2024 Jun; 45(11):e2300717. PubMed ID: 38445752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators.
    Kim K; Guo Y; Bae J; Choi S; Song HY; Park S; Hyun K; Ahn SK
    Small; 2021 Jun; 17(23):e2100910. PubMed ID: 33938152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable Complex Shape Changing of Polysiloxane Main-Chain Liquid Crystalline Elastomers.
    Zhang Y; Wang X; Yang W; Yan H; Zhang X; Han D; He Y; Li C; Sun L
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction.
    Saed MO; Torbati AH; Nair DP; Yakacki CM
    J Vis Exp; 2016 Jan; (107):e53546. PubMed ID: 26862925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selected macroscopic properties of liquid crystalline elastomers.
    Brand HR; Pleiner H; Martinoty P
    Soft Matter; 2006 Feb; 2(3):182-189. PubMed ID: 32646144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degree of Orientation in Liquid Crystalline Elastomers Defines the Magnitude and Rate of Actuation.
    Bauman GE; Hoang JD; Toney MF; White TJ
    ACS Macro Lett; 2023 Feb; 12(2):248-254. PubMed ID: 36715430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotropic Elastomers.
    Donovan BR; Fowler HE; Matavulj VM; White TJ
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13744-13748. PubMed ID: 31219675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow dynamics of shape recovery of disordered nematic elastomers.
    Urayama K; Honda S; Takigawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041709. PubMed ID: 17155080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior.
    Li S; Song Z; Fan Y; Wei D; Liu Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable 3D Shape-Change Liquid Crystalline Elastomer Based on a Vertically Aligned Monodomain with Cross-link Gradient.
    Hu J; Kuang ZY; Tao L; Huang YF; Wang Q; Xie HL; Yin JR; Chen EQ
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48393-48401. PubMed ID: 31786930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers.
    Merkel DR; Traugutt NA; Visvanathan R; Yakacki CM; Frick CP
    Soft Matter; 2018 Jul; 14(29):6024-6036. PubMed ID: 29974115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Enforced Alignment of Reprogrammable Liquid Crystalline Elastomers.
    Hebner TS; Kirkpatrick BE; Anseth KS; Bowman CN; White TJ
    Adv Sci (Weinh); 2022 Oct; 9(29):e2204003. PubMed ID: 35988144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localizing genesis in polydomain liquid crystal elastomers.
    Fowler HE; Donovan BR; McCracken JM; López Jiménez F; White TJ
    Soft Matter; 2020 Jan; 16(2):330-336. PubMed ID: 31701098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finsler geometry modeling and Monte Carlo study of liquid crystal elastomers under electric fields.
    Proutorov E; Matsuyama N; Koibuchi H
    J Phys Condens Matter; 2018 Oct; 30(40):405101. PubMed ID: 30141416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.