BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35380437)

  • 21. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics.
    Tian F; Cai L; Chang J; Li S; Liu C; Li T; Sun J
    Lab Chip; 2018 Nov; 18(22):3436-3445. PubMed ID: 30328446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
    Lee Y; Guan G; Bhagat AA
    Cytometry A; 2018 Dec; 93(12):1251-1254. PubMed ID: 30080307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic separation of circulating tumor cells.
    Li P; Mao Z; Peng Z; Zhou L; Chen Y; Huang PH; Truica CI; Drabick JJ; El-Deiry WS; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4970-5. PubMed ID: 25848039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples.
    Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P
    Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size-based separation methods of circulating tumor cells.
    Hao SJ; Wan Y; Xia YQ; Zou X; Zheng SY
    Adv Drug Deliv Rev; 2018 Feb; 125():3-20. PubMed ID: 29326054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods.
    Huang D; Xiang N
    Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-automatic PD-L1 Characterization and Enumeration of Circulating Tumor Cells from Non-small Cell Lung Cancer Patients by Immunofluorescence.
    Garcia J; Barthelemy D; Geiguer F; Ballandier J; Li KW; Aurel JP; Le Breton F; Rodriguez-Lafrasse C; Manship B; Couraud S; Payen L
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31475991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
    Murlidhar V; Rivera-Báez L; Nagrath S
    Small; 2016 Sep; 12(33):4450-63. PubMed ID: 27436104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-cost polymer-film spiral inertial microfluidic device for label-free separation of malignant tumor cells.
    Wang C; Chen Y; Gu X; Zhang X; Gao C; Dong L; Zheng S; Feng S; Xiang N
    Electrophoresis; 2022 Feb; 43(3):464-471. PubMed ID: 34611912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement.
    Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z
    Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment.
    Smith KJ; Jana JA; Kaehr A; Purcell E; Opdycke T; Paoletti C; Cooling L; Thamm DH; Hayes DF; Nagrath S
    Lab Chip; 2021 Sep; 21(18):3559-3572. PubMed ID: 34320046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics.
    Warkiani ME; Khoo BL; Wu L; Tay AK; Bhagat AA; Han J; Lim CT
    Nat Protoc; 2016 Jan; 11(1):134-48. PubMed ID: 26678083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Microfluidic Chip for Efficient Circulating Tumor Cells Enrichment, Screening, and Single-Cell RNA Sequencing.
    Shi F; Jia F; Wei Z; Ma Y; Fang Z; Zhang W; Hu Z
    Proteomics; 2021 Feb; 21(3-4):e2000060. PubMed ID: 33219587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients.
    Tan SJ; Lakshmi RL; Chen P; Lim WT; Yobas L; Lim CT
    Biosens Bioelectron; 2010 Dec; 26(4):1701-5. PubMed ID: 20719496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.