BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 35380464)

  • 1. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile Organic Compounds of
    Zou X; Wei Y; Zhu J; Sun J; Shao X
    Foods; 2023 Sep; 12(19):. PubMed ID: 37835272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory Abilities of
    Chen X; Wang Y; Gao Y; Gao T; Zhang D
    Plant Pathol J; 2019 Oct; 35(5):425-436. PubMed ID: 31632218
    [No Abstract]   [Full Text] [Related]  

  • 7. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.
    Gotor-Vila A; Teixidó N; Di Francesco A; Usall J; Ugolini L; Torres R; Mari M
    Food Microbiol; 2017 Jun; 64():219-225. PubMed ID: 28213029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape.
    Di Francesco A; Zajc J; Gunde-Cimerman N; Aprea E; Gasperi F; Placì N; Caruso F; Baraldi E
    World J Microbiol Biotechnol; 2020 Oct; 36(11):171. PubMed ID: 33067644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea.
    Ni J; Yu L; Li F; Li Y; Zhang M; Deng Y; Liu X
    World J Microbiol Biotechnol; 2023 Mar; 39(5):117. PubMed ID: 36918502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Di Francesco A; Jabeen F; Vall-Llaura N; Moret E; Martini M; Torres R; Ermacora P; Teixidó N
    Front Plant Sci; 2024; 15():1398014. PubMed ID: 38779078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro.
    Yalage Don SM; Schmidtke LM; Gambetta JM; Steel CC
    Sci Rep; 2020 Mar; 10(1):4498. PubMed ID: 32161291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal effects of volatile compounds produced by Tetrapisispora sp. strain 111A-NL1 as a new biocontrol agent on the strawberry grey mold disease.
    Bagheri S; Amini J; Ashengroph M; Koushesh Saba M
    Cell Mol Biol (Noisy-le-grand); 2022 Apr; 68(4):12-23. PubMed ID: 35988271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
    Fan QS; Lin HJ; Hu YJ; Jin J; Yan HH; Zhang RQ
    Biotechnol Lett; 2024 May; ():. PubMed ID: 38811460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-harvest control of gray mold in table grapes using volatile sulfur compounds from Allium sativum.
    Gándara-Ledezma A; Corrales-Maldonado C; Rivera-Domínguez M; Martínez-Téllez MÁ; Vargas-Arispuro I
    J Sci Food Agric; 2015 Feb; 95(3):497-503. PubMed ID: 24862582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit
    Lin Y; Ruan H; Akutse KS; Lai B; Lin Y; Hou Y; Zhong F
    J Agric Food Chem; 2019 Dec; 67(49):13706-13717. PubMed ID: 31693347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays.
    Parafati L; Vitale A; Restuccia C; Cirvilleri G
    Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata.
    Yalage Don SM; Schmidtke LM; Gambetta JM; Steel CC
    Res Microbiol; 2021; 172(1):103788. PubMed ID: 33049328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Biocontrol Function of a Burkholderia gladioli Strain against Botrytis cinerea.
    Wang D; Luo WZ; Zhang DD; Li R; Kong ZQ; Song J; Dai XF; Alkan N; Chen JY
    Microbiol Spectr; 2023 Mar; 11(2):e0480522. PubMed ID: 36861984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.