These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35380728)

  • 1. Do unmanned aerial vehicles reduce the duration and costs in transporting sputum samples? A feasibility study conducted in Himachal Pradesh, India.
    Thakur V; Ganeshkumar P; Lakshmanan S; Rubeshkumar P
    Trans R Soc Trop Med Hyg; 2022 Oct; 116(10):971-973. PubMed ID: 35380728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimization of the "UAV-vehicle" joint delivery route considering mountainous cities.
    Liu W; Li W; Zhou Q; Die Q; Yang Y
    PLoS One; 2022; 17(3):e0265518. PubMed ID: 35312709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Unmanned Aerial Vehicle Technology to Improve Public Health Practice: Prospects and Barriers.
    Bhattacharya S; Hossain MM; Hoedebecke K; Bacorro M; Gökdemir Ö; Singh A
    Indian J Community Med; 2020; 45(4):396-398. PubMed ID: 33623188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles.
    Khawaja W; Semkin V; Ratyal NI; Yaqoob Q; Gul J; Guvenc I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality-of-Service-Centric Design and Analysis of Unmanned Aerial Vehicles.
    Jha SK; Prakash S; Rathore RS; Mahmud M; Kaiwartya O; Lloret J
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of dump and landfill waste volumes using unmanned aerial systems.
    Filkin T; Sliusar N; Huber-Humer M; Ritzkowski M; Korotaev V
    Waste Manag; 2022 Feb; 139():301-308. PubMed ID: 34998186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drone Transport of Microbes in Blood and Sputum Laboratory Specimens.
    Amukele TK; Street J; Carroll K; Miller H; Zhang SX
    J Clin Microbiol; 2016 Oct; 54(10):2622-5. PubMed ID: 27535683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmanned aerial vehicles for surveillance and control of vectors of malaria and other vector-borne diseases.
    Mechan F; Bartonicek Z; Malone D; Lees RS
    Malar J; 2023 Jan; 22(1):23. PubMed ID: 36670398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal path planning of Unmanned Aerial Vehicles (UAVs) for targets touring: Geometric and arc parameterization approaches.
    Forkan M; Rizvi MM; Chowdhury MAM
    PLoS One; 2022; 17(10):e0276105. PubMed ID: 36240139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.
    Bae J; Lee J; Jang A; Ju YK; Park MJ
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power-Efficient Wireless Coverage Using Minimum Number of UAVs.
    Sawalmeh A; Othman NS; Liu G; Khreishah A; Alenezi A; Alanazi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring.
    Mir I; Eisa SA; Taha H; Maqsood A; Akhtar S; Islam TU
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34325408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution.
    Meng Y; Zhong W; Liu C; Su J; Su J; Lan Y; Wang Z; Wang M
    PeerJ; 2022; 10():e13064. PubMed ID: 35295557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimal Routing Algorithm for Unmanned Aerial Vehicles.
    Kim S; Kwak JH; Oh B; Lee DH; Lee D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of unmanned aerial vehicles for medical product transport.
    Thiels CA; Aho JM; Zietlow SP; Jenkins DH
    Air Med J; 2015; 34(2):104-8. PubMed ID: 25733117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Deployment of Charging Stations for Aerial Surveillance by UAVs with the Assistance of Public Transportation Vehicles.
    Huang H; Savkin AV
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles.
    Fevgas G; Lagkas T; Argyriou V; Sarigiannidis P
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques.
    Chamola V; Kotesh P; Agarwal A; Naren ; Gupta N; Guizani M
    Ad Hoc Netw; 2021 Feb; 111():102324. PubMed ID: 33071687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.