These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35380805)

  • 1. pH- and Calcium-Dependent Aromatic Network in the SARS-CoV-2 Envelope Protein.
    Medeiros-Silva J; Somberg NH; Wang HK; McKay MJ; Mandala VS; Dregni AJ; Hong M
    J Am Chem Soc; 2022 Apr; 144(15):6839-6850. PubMed ID: 35380805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Drug Binding of the SARS-CoV-2 Envelope Protein in Phospholipid Bilayers.
    Mandala VS; McKay MJ; Shcherbakov AA; Dregni AJ; Kolocouris A; Hong M
    Res Sq; 2020 Sep; ():. PubMed ID: 32995764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers.
    Mandala VS; McKay MJ; Shcherbakov AA; Dregni AJ; Kolocouris A; Hong M
    Nat Struct Mol Biol; 2020 Dec; 27(12):1202-1208. PubMed ID: 33177698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The envelope protein of SARS-CoV-2 increases intra-Golgi pH and forms a cation channel that is regulated by pH.
    Cabrera-Garcia D; Bekdash R; Abbott GW; Yazawa M; Harrison NL
    J Physiol; 2021 Jun; 599(11):2851-2868. PubMed ID: 33709461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cytoplasmic Domain of the SARS-CoV-2 Envelope Protein Assembles into a β-Sheet Bundle in Lipid Bilayers.
    Dregni AJ; McKay MJ; Surya W; Queralt-Martin M; Medeiros-Silva J; Wang HK; Aguilella V; Torres J; Hong M
    J Mol Biol; 2023 Mar; 435(5):167966. PubMed ID: 36682677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SARS-CoV-2 infection alkalinizes the ERGIC and lysosomes through the viroporin activity of the viral envelope protein.
    Wang WA; Carreras-Sureda A; Demaurex N
    J Cell Sci; 2023 Mar; 136(6):. PubMed ID: 36807531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport mechanisms of SARS-CoV-E viroporin in calcium solutions: Lipid-dependent Anomalous Mole Fraction Effect and regulation of pore conductance.
    Verdiá-Báguena C; Aguilella VM; Queralt-Martín M; Alcaraz A
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183590. PubMed ID: 33621516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers.
    Somberg NH; Wu WW; Medeiros-Silva J; Dregni AJ; Jo H; DeGrado WF; Hong M
    Biochemistry; 2022 Nov; 61(21):2280-2294. PubMed ID: 36219675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification of Tretinoin as a SARS-CoV-2 envelope (E) protein ion channel inhibitor.
    Dey D; Borkotoky S; Banerjee M
    Comput Biol Med; 2020 Dec; 127():104063. PubMed ID: 33126128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes of an ion channel detected through water-protein interactions using solid-state NMR spectroscopy.
    Luo W; Hong M
    J Am Chem Soc; 2010 Feb; 132(7):2378-84. PubMed ID: 20112896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerization-Dependent Beta-Structure Formation in SARS-CoV-2 Envelope Protein.
    Surya W; Torres J
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca
    Khelashvili G; Plante A; Doktorova M; Weinstein H
    Biophys J; 2021 Mar; 120(6):1105-1119. PubMed ID: 33631204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing effects of the SARS-CoV-2 E protein on membrane curvature and intracellular calcium.
    Mehregan A; Pérez-Conesa S; Zhuang Y; Elbahnsi A; Pasini D; Lindahl E; Howard RJ; Ulens C; Delemotte L
    Biochim Biophys Acta Biomembr; 2022 Oct; 1864(10):183994. PubMed ID: 35724739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.
    Sarkar M; Saha S
    PLoS One; 2020; 15(8):e0237300. PubMed ID: 32785274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Study of the Ion and Water Permeation and Transport Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel.
    Cao Y; Yang R; Wang W; Lee I; Zhang R; Zhang W; Sun J; Xu B; Meng X
    Front Mol Biosci; 2020; 7():565797. PubMed ID: 33173781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR.
    Williams JK; Zhang Y; Schmidt-Rohr K; Hong M
    Biophys J; 2013 Apr; 104(8):1698-708. PubMed ID: 23601317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel.
    Williams JK; Tietze D; Lee M; Wang J; Hong M
    J Am Chem Soc; 2016 Jul; 138(26):8143-55. PubMed ID: 27286559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the SARS-CoV-2 envelope protein as a pH-dependent cation channel.
    Trobec T
    J Physiol; 2021 Jul; 599(14):3435-3436. PubMed ID: 34089533
    [No Abstract]   [Full Text] [Related]  

  • 20. Ca
    Khelashvili G; Plante A; Doktorova M; Weinstein H
    bioRxiv; 2021 Jan; ():. PubMed ID: 33299996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.