BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35380814)

  • 21. Structural basis for a complex I mutation that blocks pathological ROS production.
    Yin Z; Burger N; Kula-Alwar D; Aksentijević D; Bridges HR; Prag HA; Grba DN; Viscomi C; James AM; Mottahedin A; Krieg T; Murphy MP; Hirst J
    Nat Commun; 2021 Jan; 12(1):707. PubMed ID: 33514727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases.
    Chavda V; Lu B
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans.
    Kotlyar AB; Borovok N
    Eur J Biochem; 2002 Aug; 269(16):4020-4. PubMed ID: 12180978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards the molecular mechanism of respiratory complex I.
    Hirst J
    Biochem J; 2009 Dec; 425(2):327-39. PubMed ID: 20025615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I.
    Kaila VRI
    J R Soc Interface; 2018 Apr; 15(141):. PubMed ID: 29643224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury.
    Perry CN; Huang C; Liu W; Magee N; Carreira RS; Gottlieb RA
    PLoS One; 2011 Feb; 6(2):e16288. PubMed ID: 21339825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial nitric oxide production supported by reverse electron transfer.
    Bombicino SS; Iglesias DE; Zaobornyj T; Boveris A; Valdez LB
    Arch Biochem Biophys; 2016 Oct; 607():8-19. PubMed ID: 27523732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular strain in the active/deactive-transition modulates domain coupling in respiratory complex I.
    Di Luca A; Kaila VRI
    Biochim Biophys Acta Bioenerg; 2021 May; 1862(5):148382. PubMed ID: 33513365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the mechanism of respiratory complex I.
    Friedrich T
    J Bioenerg Biomembr; 2014 Aug; 46(4):255-68. PubMed ID: 25022766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I).
    Yakovlev G; Hirst J
    Biochemistry; 2007 Dec; 46(49):14250-8. PubMed ID: 18001142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33.
    Wang R; Yi J; Shang J; Yu W; Li Z; Huang H; Xie H; Wang S
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926728
    [No Abstract]   [Full Text] [Related]  

  • 37. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport.
    Onukwufor JO; Berry BJ; Wojtovich AP
    Antioxidants (Basel); 2019 Aug; 8(8):. PubMed ID: 31390791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I.
    Sazanov LA
    J Bioenerg Biomembr; 2014 Aug; 46(4):247-53. PubMed ID: 24943718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryo-EM structure of respiratory complex I at work.
    Parey K; Brandt U; Xie H; Mills DJ; Siegmund K; Vonck J; Kühlbrandt W; Zickermann V
    Elife; 2018 Oct; 7():. PubMed ID: 30277212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.