BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35380846)

  • 21. Role of Polymeric Excipients in the Stabilization of Olanzapine when Exposed to Aqueous Environments.
    Paisana M; Wahl M; Pinto J
    Molecules; 2015 Dec; 20(12):22364-82. PubMed ID: 26703534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoresponsive polymer system based on poly(N-vinylcaprolactam) intended for local radiotherapy applications.
    Černoch P; Černochová Z; Kučka J; Hrubý M; Petrova S; Štěpánek P
    Appl Radiat Isot; 2015 Apr; 98():7-12. PubMed ID: 25617711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.
    Kyung D; Lim HK; Kim H; Lee W
    Environ Sci Technol; 2015 Jan; 49(2):1197-205. PubMed ID: 25532462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.
    York JD; Firoozabadi A
    J Phys Chem B; 2008 Jan; 112(3):845-51. PubMed ID: 18171051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic molecular dynamics simulations of the LCST conformational transition in poly(N-vinylcaprolactam) in water.
    Zhelavskyi OS; Kyrychenko A
    J Mol Graph Model; 2019 Jul; 90():51-58. PubMed ID: 31009934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study on the kinetic effect of
    Ren JJ; Lu ZL; Long Z; Liang D
    RSC Adv; 2020 Apr; 10(26):15320-15327. PubMed ID: 35495463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients.
    Wikström H; Carroll WJ; Taylor LS
    Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methane hydrate formation behaviors in high water-cut oil-in-water systems with hydrate promoters.
    Kele Y; Yuemeng R; Cheng L; Anshan X; Xiaofang L
    RSC Adv; 2021 Sep; 11(49):30597-30609. PubMed ID: 35479858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate.
    Aman ZM; Olcott K; Pfeiffer K; Sloan ED; Sum AK; Koh CA
    Langmuir; 2013 Feb; 29(8):2676-82. PubMed ID: 23363244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation on Hydrate Growth at the Oil-Water Interface: In the Presence of Wax and Kinetic Hydrate Inhibitor.
    Song G; Ning Y; Li Y; Wang W
    Langmuir; 2020 Dec; 36(48):14881-14891. PubMed ID: 33216559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonpolymeric Citramide-Based Kinetic Hydrate Inhibitors: Good Performance with Just Six Alkylamide Groups.
    Ghosh R; Kelland MA
    ACS Omega; 2022 Apr; 7(16):13953-13962. PubMed ID: 35559148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water plasticizes only a small part of the amorphous phase in nylon-6.
    Reuvers N; Huinink H; Adan O
    Macromol Rapid Commun; 2013 Jun; 34(11):949-53. PubMed ID: 23677784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterisation and phase transition behaviour of temperature-responsive physically crosslinked poly (N-vinylcaprolactam) based polymers for biomedical applications.
    Halligan SC; Dalton MB; Murray KA; Dong Y; Wang W; Lyons JG; Geever LM
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():130-139. PubMed ID: 28628999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preventing Hydrate Adhesion with Magnetic Slippery Surfaces.
    Ragunathan T; Xu X; Shuhili JA; Wood CD
    ACS Omega; 2019 Oct; 4(14):15789-15797. PubMed ID: 31592451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Effects of Gas Hydrate Antiagglomerant Molecules on Interfacial Interparticle Force Interactions.
    Hu S; Vo L; Monteiro D; Bodnar S; Prince P; Koh CA
    Langmuir; 2021 Feb; 37(5):1651-1661. PubMed ID: 33507761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.
    Hu S; Koh CA
    Langmuir; 2017 Oct; 33(42):11299-11309. PubMed ID: 28922923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation.
    Mirzaeifard S; Servio P; Rey AD
    J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of the Comprehensive Kinetic Model of Natural Gas Hydrate Formation in a Water-in-Oil Emulsion Flow System.
    Lv X; Liu Y; Shi B; Zhou S; Lei Y; Yu P; Duan J
    ACS Omega; 2020 Dec; 5(51):33101-33112. PubMed ID: 33403272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.