These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 35380892)
1. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Zhao Y; Zhu Y; Liu X; Jin Z; Duan Y; Zhang Q; Wu C; Feng L; Du X; Zhao J; Shao M; Zhang B; Yang X; Wu L; Ji X; Guddat LW; Yang K; Rao Z; Yang H Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2117142119. PubMed ID: 35380892 [TBL] [Abstract][Full Text] [Related]
2. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. Kenward C; Vuckovic M; Paetzel M; Strynadka NCJ J Biol Chem; 2024 Jun; 300(6):107367. PubMed ID: 38750796 [TBL] [Abstract][Full Text] [Related]
3. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Jin Z; Wang H; Duan Y; Yang H Biochem Biophys Res Commun; 2021 Jan; 538():63-71. PubMed ID: 33288200 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 main protease cleaves MAGED2 to antagonize host antiviral defense. Ju X; Wang Z; Wang P; Ren W; Yu Y; Yu Y; Yuan B; Song J; Zhang X; Zhang Y; Xu C; Tian B; Shi Y; Zhang R; Ding Q mBio; 2023 Aug; 14(4):e0137323. PubMed ID: 37439567 [TBL] [Abstract][Full Text] [Related]
5. Optimization of quenched fluorescent peptide substrates of SARS-CoV-2 3CL Cesar Ramos de Jesus H; Solis N; Machado Y; Pablos I; Bell PA; Kappelhoff R; Grin PM; Sorgi CA; Butler GS; Overall CM J Virol; 2024 Jun; 98(6):e0004924. PubMed ID: 38742901 [TBL] [Abstract][Full Text] [Related]
6. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Behnam MAM Biochimie; 2021 Mar; 182():177-184. PubMed ID: 33484784 [TBL] [Abstract][Full Text] [Related]
7. SARS-CoV-2 polyprotein substrate regulates the stepwise M Narwal M; Armache JP; Edwards TJ; Murakami KS J Biol Chem; 2023 May; 299(5):104697. PubMed ID: 37044215 [TBL] [Abstract][Full Text] [Related]
8. X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Lee J; Kenward C; Worrall LJ; Vuckovic M; Gentile F; Ton AT; Ng M; Cherkasov A; Strynadka NCJ; Paetzel M Nat Commun; 2022 Sep; 13(1):5196. PubMed ID: 36057636 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro. Yadav R; Courouble VV; Dey SK; Harrison JJEK; Timm J; Hopkins JB; Slack RL; Sarafianos SG; Ruiz FX; Griffin PR; Arnold E Sci Adv; 2022 Dec; 8(49):eadd2191. PubMed ID: 36490335 [TBL] [Abstract][Full Text] [Related]
10. Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor. Kovalevsky A; Coates L; Kneller DW; Ghirlando R; Aniana A; Nashed NT; Louis JM J Mol Biol; 2022 Dec; 434(24):167876. PubMed ID: 36334779 [TBL] [Abstract][Full Text] [Related]
11. Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main Protease. MacDonald EA; Frey G; Namchuk MN; Harrison SC; Hinshaw SM; Windsor IW ACS Infect Dis; 2021 Sep; 7(9):2591-2595. PubMed ID: 34437808 [TBL] [Abstract][Full Text] [Related]
12. Identification of SARS-CoV-2 Main Protease (Mpro) Cleavage Sites Using Two-Dimensional Electrophoresis and In Silico Cleavage Site Prediction. Miltner N; Kalló G; Csősz É; Miczi M; Nagy T; Mahdi M; Mótyán JA; Tőzsér J Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834648 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Bhardwaj VK; Singh R; Das P; Purohit R Comput Biol Med; 2021 Jan; 128():104117. PubMed ID: 33217661 [TBL] [Abstract][Full Text] [Related]
14. An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Sun Z; Wang L; Li X; Fan C; Xu J; Shi Z; Qiao H; Lan Z; Zhang X; Li L; Zhou X; Geng Y Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2120913119. PubMed ID: 35324337 [TBL] [Abstract][Full Text] [Related]
15. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Osipiuk J; Azizi SA; Dvorkin S; Endres M; Jedrzejczak R; Jones KA; Kang S; Kathayat RS; Kim Y; Lisnyak VG; Maki SL; Nicolaescu V; Taylor CA; Tesar C; Zhang YA; Zhou Z; Randall G; Michalska K; Snyder SA; Dickinson BC; Joachimiak A Nat Commun; 2021 Feb; 12(1):743. PubMed ID: 33531496 [TBL] [Abstract][Full Text] [Related]
16. First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Amin SA; Banerjee S; Singh S; Qureshi IA; Gayen S; Jha T Mol Divers; 2021 Aug; 25(3):1827-1838. PubMed ID: 33400085 [TBL] [Abstract][Full Text] [Related]
17. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Amin SA; Banerjee S; Ghosh K; Gayen S; Jha T Bioorg Med Chem; 2021 Jan; 29():115860. PubMed ID: 33191083 [TBL] [Abstract][Full Text] [Related]
19. Identification of Host Cellular Protein Substrates of SARS-COV-2 Main Protease. Miczi M; Golda M; Kunkli B; Nagy T; Tőzsér J; Mótyán JA Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333742 [TBL] [Abstract][Full Text] [Related]
20. Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins. Muramatsu T; Kim YT; Nishii W; Terada T; Shirouzu M; Yokoyama S FEBS J; 2013 May; 280(9):2002-13. PubMed ID: 23452147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]