These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35380967)
1. In-Vitro Demonstration of Ultra-Reliable, Wireless and Batteryless Implanted Intracranial Sensors Operated on Loci of Exceptional Points. Yang M; Ye Z; Alsaab N; Farhat M; Chen PY IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):287-295. PubMed ID: 35380967 [TBL] [Abstract][Full Text] [Related]
2. Implantable Wireless Intracranial Pressure Monitoring Based on Air Pressure Sensing. Jiang H; Guo Y; Wu Z; Zhang C; Jia W; Wang Z IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1076-1087. PubMed ID: 30010593 [TBL] [Abstract][Full Text] [Related]
3. Wireless Bioelectronics for In Vivo Pressure Monitoring with Mechanically-Compliant Hydrogel Biointerfaces. Lin J; Chen X; Zhang P; Xue Y; Feng Y; Ni Z; Tao Y; Wang Y; Liu J Adv Mater; 2024 Jun; 36(26):e2400181. PubMed ID: 38419474 [TBL] [Abstract][Full Text] [Related]
4. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor. Wang F; Zhang X; Shokoueinejad M; Iskandar BJ; Medow JE; Webster JG IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1123-1132. PubMed ID: 28809712 [TBL] [Abstract][Full Text] [Related]
5. Inductive passive sensor for intraparenchymal and intraventricular monitoring of intracranial pressure. Behfar MH; Abada E; Sydanheimo L; Goldman K; Fleischman AJ; Gupta N; Ukkonen L; Roy S Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1950-1954. PubMed ID: 28268710 [TBL] [Abstract][Full Text] [Related]
6. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Chen LY; Tee BC; Chortos AL; Schwartz G; Tse V; Lipomi DJ; Wong HS; McConnell MV; Bao Z Nat Commun; 2014 Oct; 5():5028. PubMed ID: 25284074 [TBL] [Abstract][Full Text] [Related]
7. A multisensor implant for continuous monitoring of intracranial pressure dynamics. Jetzki S; Weinzierl M; Krause I; Hahne S; Rehbaum H; Kiausch M; Kozubek I; Hellenbroich C; Oertel M; Walter M; Leonhardt S IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):356-65. PubMed ID: 23853180 [TBL] [Abstract][Full Text] [Related]
10. [Intracranial Pressure Monitor Based on Wireless]. Han H; Zhang Y; Qian C; Wang H; Qian Z; Li W Zhongguo Yi Liao Qi Xie Za Zhi; 2017 Mar; 41(2):89-91. PubMed ID: 29862675 [TBL] [Abstract][Full Text] [Related]
11. Reliability of a wearable wireless patch for continuous remote monitoring of vital signs in patients recovering from major surgery: a clinical validation study from the TRaCINg trial. Downey C; Ng S; Jayne D; Wong D BMJ Open; 2019 Aug; 9(8):e031150. PubMed ID: 31420399 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature variation on remote pressure readout in wirelessly powered intracranial pressure monitoring system. Khan MWA; Rizwan M; Sydanheimo L; Rahmat-Samii Y; Ukkonen L; Bjorninen T Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1728-1731. PubMed ID: 29060220 [TBL] [Abstract][Full Text] [Related]
13. A surface acoustic wave ICP sensor with good temperature stability. Zhang B; Hu H; Ye A; Zhang P Technol Health Care; 2017 Jul; 25(S1):435-441. PubMed ID: 28582931 [TBL] [Abstract][Full Text] [Related]
14. Continuous Versus Intermittent Vital Signs Monitoring Using a Wearable, Wireless Patch in Patients Admitted to Surgical Wards: Pilot Cluster Randomized Controlled Trial. Downey C; Randell R; Brown J; Jayne DG J Med Internet Res; 2018 Dec; 20(12):e10802. PubMed ID: 30538086 [TBL] [Abstract][Full Text] [Related]
15. Wirelessly Powered Signal Regeneration to Improve the Remote Detectability of an Inductive Pressure Sensor. Qian W; Qian C IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1011-1020. PubMed ID: 31352353 [TBL] [Abstract][Full Text] [Related]
16. Interventional placement of thin coil shaped implants powered wirelessly for monitoring vital signals and controlling abnormal activities by electro-stimulation. Ohta H; Honda M; Takamiya M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3035-3038. PubMed ID: 28268951 [TBL] [Abstract][Full Text] [Related]
17. A wireless fully-passive acquisition of biopotentials. Liu S; Meng X; Zhang J; Chae J Biosens Bioelectron; 2019 Aug; 139():111336. PubMed ID: 31128477 [TBL] [Abstract][Full Text] [Related]
18. A Feasibility Study of Remote Non-Contact Vital Signs (NCVS) Monitoring in a Clinic Using a Novel Sensor Realized by Software-Defined Radio (SDR). Liu Y; Sweeney C; Mayeda JC; Lopez J; Lie PE; Nguyen TQ; Lie DYC Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831957 [TBL] [Abstract][Full Text] [Related]
19. Are current wireless monitoring systems capable of detecting adverse events in high-risk surgical patients? A descriptive study. Breteler MJM; KleinJan E; Numan L; Ruurda JP; Van Hillegersberg R; Leenen LPH; Hermans M; Kalkman CJ; Blokhuis TJ Injury; 2020 May; 51 Suppl 2():S97-S105. PubMed ID: 31761422 [TBL] [Abstract][Full Text] [Related]
20. Wireless Interrogation of Implantable SAW Sensors. Zou L; McLeod C; Bahmanyar MR IEEE Trans Biomed Eng; 2020 May; 67(5):1409-1417. PubMed ID: 31449002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]