BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35380993)

  • 1. Tumor-associated antigen PRAME exhibits dualistic functions that are targetable in diffuse large B cell lymphoma.
    Takata K; Chong LC; Ennishi D; Aoki T; Li MY; Thakur A; Healy S; Viganò E; Dao T; Kwon D; Duns G; Nielsen JS; Ben-Neriah S; Tse E; Hung SS; Boyle M; Mun SS; Bourne CM; Woolcock B; Telenius A; Kishida M; Rai S; Zhang AW; Bashashati A; Saberi S; D'Antonio G; Nelson BH; Shah SP; Hoodless PA; Melnick AM; Gascoyne RD; Connors JM; Scheinberg DA; Béguelin W; Scott DW; Steidl C
    J Clin Invest; 2022 May; 132(10):. PubMed ID: 35380993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy.
    Mitsuhashi K; Masuda A; Wang YH; Shiseki M; Motoji T
    Int J Hematol; 2014 Jul; 100(1):88-95. PubMed ID: 24820636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogene associated cDNA microarray analysis shows PRAME gene expression is a marker for response to anthracycline containing chemotherapy in patients with diffuse large B-cell lymphoma.
    Kawano R; Karube K; Kikuchi M; Takeshita M; Tamura K; Uike N; Eto T; Ohshima K; Suzumiya J
    J Clin Exp Hematop; 2009 May; 49(1):1-7. PubMed ID: 19474511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.
    McCabe MT; Ott HM; Ganji G; Korenchuk S; Thompson C; Van Aller GS; Liu Y; Graves AP; Della Pietra A; Diaz E; LaFrance LV; Mellinger M; Duquenne C; Tian X; Kruger RG; McHugh CF; Brandt M; Miller WH; Dhanak D; Verma SK; Tummino PJ; Creasy CL
    Nature; 2012 Dec; 492(7427):108-12. PubMed ID: 23051747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical and genomic profiles of diffuse large B-cell lymphomas: implications for targeted EZH2 inhibitor therapy?
    Dubois S; Mareschal S; Picquenot JM; Viailly PJ; Bohers E; Cornic M; Bertrand P; Veresezan EL; Ruminy P; Maingonnat C; Marchand V; Lanic H; Penther D; Bastard C; Tilly H; Jardin F
    Oncotarget; 2015 Jun; 6(18):16712-24. PubMed ID: 25762637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas.
    Nettersheim D; Arndt I; Sharma R; Riesenberg S; Jostes S; Schneider S; Hölzel M; Kristiansen G; Schorle H
    Br J Cancer; 2016 Aug; 115(4):454-64. PubMed ID: 27441500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients.
    De Carvalho DD; Binato R; Pereira WO; Leroy JM; Colassanti MD; Proto-Siqueira R; Bueno-Da-Silva AE; Zago MA; Zanichelli MA; Abdelhay E; Castro FA; Jacysyn JF; Amarante-Mendes GP
    Oncogene; 2011 Jan; 30(2):223-33. PubMed ID: 20838376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer testis antigen PRAME: An anti-cancer target with immunomodulatory potential.
    Naik A; Thomas R; Al-Khadairi G; Bacha R; Hendrickx W; Decock J
    J Cell Mol Med; 2021 Nov; 25(22):10376-10388. PubMed ID: 34612587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PRAME Is a Potential Carcinogenic Biomarker that Correlates with Patient Prognosis and Tumor Immunity Based on Pan-Cancer Analysis.
    Zhao Q; Zhang Z; Wu Y
    Ann Clin Lab Sci; 2022 Mar; 52(2):185-195. PubMed ID: 35414497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical Detection of Cancer-Testis Antigen PRAME.
    Lezcano C; Müller AM; Frosina D; Hernandez E; Geronimo JA; Busam KJ; Jungbluth AA
    Int J Surg Pathol; 2021 Dec; 29(8):826-835. PubMed ID: 33890816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary diffuse large B cell lymphoma of the stomach: analysis of somatic mutations in the rearranged immunoglobulin heavy chain variable genes indicates antigen selection.
    Driessen A; Tierens A; Ectors N; Stul M; Pittaluga S; Geboes K; Delabie J; De Wolf-Peeters C
    Leukemia; 1999 Jul; 13(7):1085-92. PubMed ID: 10400425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma.
    Hemminger JA; Toland AE; Scharschmidt TJ; Mayerson JL; Guttridge DC; Iwenofu OH
    Mod Pathol; 2014 Sep; 27(9):1238-45. PubMed ID: 24457462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in Class 1 and Class 2 uveal melanomas.
    Field MG; Durante MA; Decatur CL; Tarlan B; Oelschlager KM; Stone JF; Kuznetsov J; Bowcock AM; Kurtenbach S; Harbour JW
    Oncotarget; 2016 Sep; 7(37):59209-59219. PubMed ID: 27486988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cancer testis antigen (CT10, PRAME) and MHC I expression in high-grade urothelial carcinoma of the bladder.
    Hodgson A; Jungbluth AA; Katabi N; Xu B; Downes MR
    Virchows Arch; 2020 Apr; 476(4):535-542. PubMed ID: 31485721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased PRAME-specific CTL killing of acute myeloid leukemia cells by either a novel histone deacetylase inhibitor chidamide alone or combined treatment with decitabine.
    Yao Y; Zhou J; Wang L; Gao X; Ning Q; Jiang M; Wang J; Wang L; Yu L
    PLoS One; 2013; 8(8):e70522. PubMed ID: 23940586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferentially Expressed Antigen in Melanoma (PRAME) and the PRAME Family of Leucine-Rich Repeat Proteins.
    Hermes N; Kewitz S; Staege MS
    Curr Cancer Drug Targets; 2016; 16(5):400-14. PubMed ID: 26694250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRAME as a Potential Target for Immunotherapy in Metastatic Uveal Melanoma.
    Gezgin G; Luk SJ; Cao J; Dogrusöz M; van der Steen DM; Hagedoorn RS; Krijgsman D; van der Velden PA; Field MG; Luyten GPM; Szuhai K; Harbour JW; Jordanova ES; Heemskerk MHM; Jager MJ
    JAMA Ophthalmol; 2017 Jun; 135(6):541-549. PubMed ID: 28448663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of preferentially expressed antigen in melanoma (PRAME) in testicular germ cell tumors - A comparative study with SOX17.
    Zhou Y; Rothrock A; Murugan P; Li F; Bu L
    Exp Mol Pathol; 2022 Jun; 126():104761. PubMed ID: 35390309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EZH2 Inhibition by Tazemetostat Results in Altered Dependency on B-cell Activation Signaling in DLBCL.
    Brach D; Johnston-Blackwell D; Drew A; Lingaraj T; Motwani V; Warholic NM; Feldman I; Plescia C; Smith JJ; Copeland RA; Keilhack H; Chan-Penebre E; Knutson SK; Ribich SA; Raimondi A; Thomenius MJ
    Mol Cancer Ther; 2017 Nov; 16(11):2586-2597. PubMed ID: 28835384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and Genetic Characterization of MHC Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition.
    Ennishi D; Takata K; Béguelin W; Duns G; Mottok A; Farinha P; Bashashati A; Saberi S; Boyle M; Meissner B; Ben-Neriah S; Woolcock BW; Telenius A; Lai D; Teater M; Kridel R; Savage KJ; Sehn LH; Morin RD; Marra MA; Shah SP; Connors JM; Gascoyne RD; Scott DW; Melnick AM; Steidl C
    Cancer Discov; 2019 Apr; 9(4):546-563. PubMed ID: 30705065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.