These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35381174)

  • 1. DNA Input Classification by a Riboregulator-Based Cell-Free Perceptron.
    van der Linden AJ; Pieters PA; Bartelds MW; Nathalia BL; Yin P; Huck WTS; Kim J; de Greef TFA
    ACS Synth Biol; 2022 Apr; 11(4):1510-1520. PubMed ID: 35381174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic perceptrons for neural computing in biological systems.
    Pandi A; Koch M; Voyvodic PL; Soudier P; Bonnet J; Kushwaha M; Faulon JL
    Nat Commun; 2019 Aug; 10(1):3880. PubMed ID: 31462649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits.
    Marshall R; Noireaux V
    Methods Mol Biol; 2018; 1772():61-93. PubMed ID: 29754223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Loser-Take-All DNA Circuit.
    Rodriguez KR; Sarraf N; Qian L
    ACS Synth Biol; 2021 Nov; 10(11):2878-2885. PubMed ID: 34623152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model.
    Gale EM
    Faraday Discuss; 2019 Feb; 213(0):521-551. PubMed ID: 30418449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear neural network based on an analog DNA toehold mediated strand displacement reaction circuit.
    Zou C; Zhang Q; Zhou C; Cao W
    Nanoscale; 2022 May; 14(17):6585-6599. PubMed ID: 35421885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Ribocomputing Devices for Complex Cellular Logic.
    McCutcheon G; Chaudhary S; Hong S; Park D; Kim J; Green AA
    Methods Mol Biol; 2022; 2518():65-86. PubMed ID: 35666439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free transcription-translation: engineering biology from the nanometer to the millimeter scale.
    Garenne D; Noireaux V
    Curr Opin Biotechnol; 2019 Aug; 58():19-27. PubMed ID: 30395952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry.
    Garenne D; Beisel CL; Noireaux V
    Rapid Commun Mass Spectrom; 2019 May; 33(11):1036-1048. PubMed ID: 30900355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic tunable amplifying buffer circuit in E. coli.
    Nilgiriwala KS; Jiménez J; Rivera PM; Del Vecchio D
    ACS Synth Biol; 2015 May; 4(5):577-84. PubMed ID: 25279430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and DNA Artificial Neural Networks via Fractional Coding.
    Liu X; Parhi KK
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):490-503. PubMed ID: 32149654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems.
    Marshall R; Maxwell CS; Collins SP; Beisel CL; Noireaux V
    Biotechnol Bioeng; 2017 Sep; 114(9):2137-2141. PubMed ID: 28475211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative modeling of transcription and translation of an all-E. coli cell-free system.
    Marshall R; Noireaux V
    Sci Rep; 2019 Aug; 9(1):11980. PubMed ID: 31427623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TXTL-based approach to synthetic cells.
    Garamella J; Garenne D; Noireaux V
    Methods Enzymol; 2019; 617():217-239. PubMed ID: 30784403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Characterization of Translational Riboregulators Using an in Vitro Transcription-Translation System.
    Senoussi A; Lee Tin Wah J; Shimizu Y; Robert J; Jaramillo A; Findeiss S; Axmann IM; Estevez-Torres A
    ACS Synth Biol; 2018 May; 7(5):1269-1278. PubMed ID: 29617125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing two environmental chemical signals with a synthetic genetic IMPLY gate, a 2-input-2-output integrated logic circuit, and a process pipeline to optimize its systems chemistry in Escherichia coli.
    Mukhopadhyay S; Sarkar K; Srivastava R; Pal A; Bagh S
    Biotechnol Bioeng; 2020 May; 117(5):1502-1512. PubMed ID: 31981217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Adaptive Synthetic Cell Based on Mechanosensing, Biosensing, and Inducible Gene Circuits.
    Garamella J; Majumder S; Liu AP; Noireaux V
    ACS Synth Biol; 2019 Aug; 8(8):1913-1920. PubMed ID: 31310519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and In Vivo Testing of Prokaryotic Riboregulators.
    Green AA
    Methods Mol Biol; 2017; 1632():285-302. PubMed ID: 28730447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.