These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35381376)

  • 21. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors.
    Suástegui M; Yu Ng C; Chowdhury A; Sun W; Cao M; House E; Maranas CD; Shao Z
    Metab Eng; 2017 Jul; 42():134-144. PubMed ID: 28625755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing TeroENZ and TeroMAP modules for the terpenome research platform TeroKit.
    Chen N; Zhang R; Zeng T; Zhang X; Wu R
    Database (Oxford); 2023 May; 2023():. PubMed ID: 37207351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds.
    Wang L; Maranas CD
    ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions.
    Jeffryes JG; Lerma-Ortiz C; Liu F; Golubev A; Niehaus TD; Elbadawi-Sidhu M; Fiehn O; Hanson AD; Tyo KE; Henry CS
    Metab Eng; 2022 Jan; 69():302-312. PubMed ID: 34958914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery and Evaluation of Biosynthetic Pathways for the Production of Five Methyl Ethyl Ketone Precursors.
    Tokic M; Hadadi N; Ataman M; Neves D; Ebert BE; Blank LM; Miskovic L; Hatzimanikatis V
    ACS Synth Biol; 2018 Aug; 7(8):1858-1873. PubMed ID: 30021444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning approach to evaluate the feasibility of enzymatic reactions generated by retrobiosynthesis.
    Kim Y; Ryu JY; Kim HU; Jang WD; Lee SY
    Biotechnol J; 2021 May; 16(5):e2000605. PubMed ID: 33386776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo design of biosynthetic pathways for bacterial production of bulk chemicals and biofuels.
    Okano K; Honda K; Taniguchi H; Kondo A
    FEMS Microbiol Lett; 2018 Oct; 365(20):. PubMed ID: 30169822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Advances in the microbial synthesis of aromatic fragrance molecules].
    Zhuang Y; Wu F; Yin H; Wang Q; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2021 Jun; 37(6):1998-2009. PubMed ID: 34227290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RetroRules: a database of reaction rules for engineering biology.
    Duigou T; du Lac M; Carbonell P; Faulon JL
    Nucleic Acids Res; 2019 Jan; 47(D1):D1229-D1235. PubMed ID: 30321422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals.
    Liu Q; Yu T; Li X; Chen Y; Campbell K; Nielsen J; Chen Y
    Nat Commun; 2019 Oct; 10(1):4976. PubMed ID: 31672987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the diversity of complex metabolic networks.
    Hatzimanikatis V; Li C; Ionita JA; Henry CS; Jankowski MD; Broadbelt LJ
    Bioinformatics; 2005 Apr; 21(8):1603-9. PubMed ID: 15613400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering plant metabolism into microbes: from systems biology to synthetic biology.
    Xu P; Bhan N; Koffas MA
    Curr Opin Biotechnol; 2013 Apr; 24(2):291-9. PubMed ID: 22985679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
    Lee JH; Wendisch VF
    J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerobic degradation of aromatic compounds.
    Díaz E; Jiménez JI; Nogales J
    Curr Opin Biotechnol; 2013 Jun; 24(3):431-42. PubMed ID: 23122741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underground metabolism as a rich reservoir for pathway engineering.
    Kovács SC; Szappanos B; Tengölics R; Notebaart RA; Papp B
    Bioinformatics; 2022 May; 38(11):3070-3077. PubMed ID: 35441658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BioSynther: a customized biosynthetic potential explorer.
    Tu W; Zhang H; Liu J; Hu QN
    Bioinformatics; 2016 Feb; 32(3):472-3. PubMed ID: 26471457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enumerating all possible biosynthetic pathways in metabolic networks.
    Ravikrishnan A; Nasre M; Raman K
    Sci Rep; 2018 Jul; 8(1):9932. PubMed ID: 29967471
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.