These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35381441)

  • 1. MoËT: Mixture of Expert Trees and its application to verifiable reinforcement learning.
    Vasić M; Petrović A; Wang K; Nikolić M; Singh R; Khurshid S
    Neural Netw; 2022 Jul; 151():34-47. PubMed ID: 35381441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.
    Akrour R; Tateo D; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6795-6806. PubMed ID: 34375280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Verifiable Decision Tree Prediction on Hybrid Blockchains.
    Fu M; Zhang C; Hu C; Wu T; Dong J; Zhu L
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural circuits for learning context-dependent associations of stimuli.
    Zhu H; Paschalidis IC; Hasselmo ME
    Neural Netw; 2018 Nov; 107():48-60. PubMed ID: 30177226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning Methods in Public Health.
    Weltz J; Volfovsky A; Laber EB
    Clin Ther; 2022 Jan; 44(1):139-154. PubMed ID: 35058056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture.
    Mitsopoulos K; Somers S; Schooler J; Lebiere C; Pirolli P; Thomson R
    Top Cogn Sci; 2022 Oct; 14(4):756-779. PubMed ID: 34467649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis.
    Roggeveen L; El Hassouni A; Ahrendt J; Guo T; Fleuren L; Thoral P; Girbes AR; Hoogendoorn M; Elbers PW
    Artif Intell Med; 2021 Feb; 112():102003. PubMed ID: 33581824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk-based implementation of COLREGs for autonomous surface vehicles using deep reinforcement learning.
    Heiberg A; Larsen TN; Meyer E; Rasheed A; San O; Varagnolo D
    Neural Netw; 2022 Aug; 152():17-33. PubMed ID: 35500457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reinforcement learning for multi-class imbalanced training: applications in healthcare.
    Yang J; El-Bouri R; O'Donoghue O; Lachapelle AS; Soltan AAS; Eyre DW; Lu L; Clifton DA
    Mach Learn; 2024; 113(5):2655-2674. PubMed ID: 38708086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guideline-informed reinforcement learning for mechanical ventilation in critical care.
    den Hengst F; Otten M; Elbers P; van Harmelen F; François-Lavet V; Hoogendoorn M
    Artif Intell Med; 2024 Jan; 147():102742. PubMed ID: 38184349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frame-Correlation Transfers Trigger Economical Attacks on Deep Reinforcement Learning Policies.
    Qu X; Ong YS; Gupta A
    IEEE Trans Cybern; 2022 Aug; 52(8):7577-7590. PubMed ID: 33417576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
    Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M
    J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data.
    Liu Y; Logan B; Liu N; Xu Z; Tang J; Wang Y
    Healthc Inform; 2017 Aug; 2017():380-385. PubMed ID: 29556119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control.
    Ibrokhimov B; Kim YJ; Kang S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online learning of single- and multivalued functions with an infinite mixture of linear experts.
    Damas B; Santos-Victor J
    Neural Comput; 2013 Nov; 25(11):3044-91. PubMed ID: 24001344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Attention for Sequence Modeling via Reinforcement Learning.
    Fei H; Zhang Y; Ren Y; Ji D
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3612-3621. PubMed ID: 33566767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.