BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35381458)

  • 1. Fourier light-field imaging of human organoids with a hybrid point-spread function.
    Liu W; Kim GR; Takayama S; Jia S
    Biosens Bioelectron; 2022 Jul; 208():114201. PubMed ID: 35381458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D super-resolution live-cell imaging with radial symmetry and Fourier light-field microscopy.
    Han K; Hua X; Vasani V; Kim GR; Liu W; Takayama S; Jia S
    Biomed Opt Express; 2022 Nov; 13(11):5574-5584. PubMed ID: 36733732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging.
    Hua X; Liu W; Jia S
    Optica; 2021 May; 8(5):614-620. PubMed ID: 34327282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact, Hybrid Light-Sheet and Fourier Light-Field Microscopy with a Single Objective for High-Speed Volumetric Imaging
    Zhai J; Jin C; Kong L
    J Phys Chem A; 2023 Mar; 127(12):2873-2879. PubMed ID: 36926932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging three-dimensional brain organoid architecture from meso- to nanoscale across development.
    Rodriguez-Gatica JE; Iefremova V; Sokhranyaeva L; Au Yeung SWC; Breitkreuz Y; Brüstle O; Schwarz MK; Kubitscheck U
    Development; 2022 Oct; 149(20):. PubMed ID: 35899577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids.
    Adhya D; Chennell G; Crowe JA; Valencia-Alarcón EP; Seyforth J; Hosny NA; Yasvoina MV; Forster R; Baron-Cohen S; Vernon AC; Srivastava DP
    Mol Autism; 2021 Jan; 12(1):4. PubMed ID: 33482917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background inhibited and speed-loss-free volumetric imaging
    Zhai J; Shi R; Fan K; Kong L
    Front Neurosci; 2022; 16():1004228. PubMed ID: 36248666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology.
    Li Q; Nan K; Le Floch P; Lin Z; Sheng H; Blum TS; Liu J
    Nano Lett; 2019 Aug; 19(8):5781-5789. PubMed ID: 31347851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier light-field microscopy.
    Guo C; Liu W; Hua X; Li H; Jia S
    Opt Express; 2019 Sep; 27(18):25573-25594. PubMed ID: 31510428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution 3D imaging of fixed and cleared organoids.
    Dekkers JF; Alieva M; Wellens LM; Ariese HCR; Jamieson PR; Vonk AM; Amatngalim GD; Hu H; Oost KC; Snippert HJG; Beekman JM; Wehrens EJ; Visvader JE; Clevers H; Rios AC
    Nat Protoc; 2019 Jun; 14(6):1756-1771. PubMed ID: 31053799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging.
    Browne AW; Arnesano C; Harutyunyan N; Khuu T; Martinez JC; Pollack HA; Koos DS; Lee TC; Fraser SE; Moats RA; Aparicio JG; Cobrinik D
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3311-3318. PubMed ID: 28672397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell and Spatial Analysis of Emergent Organoid Platforms.
    Kumar A; Cai S; Allam M; Henderson S; Ozbeyler M; Saiontz L; Coskun AF
    Methods Mol Biol; 2023; 2660():311-344. PubMed ID: 37191807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Interfacial and Spatiotemporal Regulation of Human Neuroepithelial Organoids.
    Tang C; Wang X; D'Urso M; van der Putten C; Kurniawan NA
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201106. PubMed ID: 35667878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies.
    Susaki EA; Takasato M
    Front Cell Dev Biol; 2021; 9():679226. PubMed ID: 34195197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Bioelectronics for Brain Organoid Electrophysiology.
    Tasnim K; Liu J
    J Mol Biol; 2022 Feb; 434(3):167165. PubMed ID: 34293341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-Edited Fluorescent and Mixed Cerebral Organoids.
    Bachmann L; Gallego Villarejo L; Heinen N; Marks D; Peters M; Müller T
    CRISPR J; 2022 Feb; 5(1):53-65. PubMed ID: 35099270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Organoids Droplet-Based Staining Method for High-End 3D Imaging of Mammary Organoids.
    Sumbal J; Koledova Z
    Methods Mol Biol; 2022; 2471():259-269. PubMed ID: 35175602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell Resolution Three-Dimensional Imaging of Intact Organoids.
    van Ineveld RL; Ariese HCR; Wehrens EJ; Dekkers JF; Rios AC
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32568249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
    Ho BX; Pek NMQ; Soh BS
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles.
    Logan S; Arzua T; Yan Y; Jiang C; Liu X; Yu LK; Liu QS; Bai X
    Cells; 2020 May; 9(5):. PubMed ID: 32456176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.