BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35381458)

  • 21.
    van den Berg CW; Koudijs A; Ritsma L; Rabelink TJ
    J Am Soc Nephrol; 2020 May; 31(5):921-929. PubMed ID: 32354986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research.
    Nguyen R; Da Won Bae S; Qiao L; George J
    Cancer Lett; 2021 Jun; 508():13-17. PubMed ID: 33771683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging organoids: a bright future ahead.
    Rios AC; Clevers H
    Nat Methods; 2018 Jan; 15(1):24-26. PubMed ID: 29298292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids.
    Le Floch P; Li Q; Lin Z; Zhao S; Liu R; Tasnim K; Jiang H; Liu J
    Adv Mater; 2022 Mar; 34(11):e2106829. PubMed ID: 35014735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates.
    Hoang P; Sun S; Tarris BA; Ma Z
    Cells Tissues Organs; 2023; 212(1):64-73. PubMed ID: 35008091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of physical cues in the development of stem cell-derived organoids.
    Tortorella I; Argentati C; Emiliani C; Martino S; Morena F
    Eur Biophys J; 2022 Mar; 51(2):105-117. PubMed ID: 34120215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput "read-on-ski" automated imaging and label-free detection system for toxicity screening of compounds using personalised human kidney organoids.
    Wang Q; Lu J; Fan K; Xu Y; Xiong Y; Sun Z; Zhai M; Zhang Z; Zhang S; Song Y; Luo J; You M; Guo M; Zhang X
    J Zhejiang Univ Sci B; 2022 Jul; 23(7):564-577. PubMed ID: 35794686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-Invasive Label-free Analysis Pipeline for In Situ Characterization of Differentiation in 3D Brain Organoid Models.
    Filan C; Charles S; Casteleiro Costa P; Niu W; Cheng BF; Wen Z; Lu H; Robles FE
    Res Sq; 2024 Apr; ():. PubMed ID: 38645145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease.
    Vieira de Sá R; Cañizares Luna M; Pasterkamp RJ
    Tissue Eng Part C Methods; 2021 Mar; 27(3):213-224. PubMed ID: 33446055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
    Marti-Figueroa CR; Ashton RS
    Acta Biomater; 2017 May; 54():35-44. PubMed ID: 28315813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human Cytomegalovirus Compromises Development of Cerebral Organoids.
    Brown RM; Rana PSJB; Jaeger HK; O'Dowd JM; Balemba OB; Fortunato EA
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31217239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Situ Super-Resolution Imaging of Organoids and Extracellular Matrix Interactions via Phototransfer by Allyl Sulfide Exchange-Expansion Microscopy (PhASE-ExM).
    Blatchley MR; Günay KA; Yavitt FM; Hawat EM; Dempsey PJ; Anseth KS
    Adv Mater; 2022 Apr; 34(16):e2109252. PubMed ID: 35182403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing mechanobiology for kidney organoid research.
    Nauryzgaliyeva Z; Goux Corredera I; Garreta E; Montserrat N
    Front Cell Dev Biol; 2023; 11():1273923. PubMed ID: 38077999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal imaging and analysis of mouse and human liver bud morphogenesis.
    Ogoke O; Guiggey D; Mon T; Shamul C; Ross S; Rao S; Parashurama N
    Dev Dyn; 2022 Apr; 251(4):662-686. PubMed ID: 34665487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparing ductal epithelial organoids for high-spatial-resolution molecular profiling using mass spectrometry imaging.
    Bakker B; Vaes RDW; Aberle MR; Welbers T; Hankemeier T; Rensen SS; Olde Damink SWM; Heeren RMA
    Nat Protoc; 2022 Apr; 17(4):962-979. PubMed ID: 35181767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids.
    Vergara MN; Flores-Bellver M; Aparicio-Domingo S; McNally M; Wahlin KJ; Saxena MT; Mumm JS; Canto-Soler MV
    Development; 2017 Oct; 144(20):3698-3705. PubMed ID: 28870990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. wFLFM: enhancing the resolution of Fourier light-field microscopy using a hybrid wide-field image.
    Liu W; Jia S
    Appl Phys Express; 2021 Jan; 14(1):. PubMed ID: 33889222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light and electron microscopy continuum-resolution imaging of 3D cell cultures.
    D'Imprima E; Garcia Montero M; Gawrzak S; Ronchi P; Zagoriy I; Schwab Y; Jechlinger M; Mahamid J
    Dev Cell; 2023 Apr; 58(7):616-632.e6. PubMed ID: 36990090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.
    Du Y; Li X; Niu Q; Mo X; Qui M; Ma T; Kuo CJ; Fu H
    J Mol Cell Biol; 2020 Aug; 12(8):630-643. PubMed ID: 32678871
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Mukashyaka P; Kumar P; Mellert DJ; Nicholas S; Noorbakhsh J; Brugiolo M; Anczukow O; Liu ET; Chuang JH
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.