These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35381493)

  • 1. Pocket-sized sensor for controlled, quantitative and instantaneous color acquisition of plant leaves.
    Borges CS; Vega R RA; Chakraborty S; Weindorf DC; Lopes G; Guimarães Guilherme LR; Curi N; Li B; Ribeiro BT
    J Plant Physiol; 2022 May; 272():153686. PubMed ID: 35381493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.
    Riccardi M; Mele G; Pulvento C; Lavini A; d'Andria R; Jacobsen SE
    Photosynth Res; 2014 Jun; 120(3):263-72. PubMed ID: 24442792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Leaf Positions for SPAD Meter Measurement in Rice.
    Yuan Z; Cao Q; Zhang K; Ata-Ul-Karim ST; Tian Y; Zhu Y; Cao W; Liu X
    Front Plant Sci; 2016; 7():719. PubMed ID: 27303416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem.
    Maiti D; Das DK; Karak T; Banerjee M
    ScientificWorldJournal; 2004 Sep; 4():838-46. PubMed ID: 15452649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light.
    Wang Y; Wang D; Shi P; Omasa K
    Plant Methods; 2014; 10(1):36. PubMed ID: 25411579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The implementation of the SPAD-502 Chlorophyll meter for the quantification of nitrogen content in Arabica coffee leaves.
    Wicharuck S; Suang S; Chaichana C; Chromkaew Y; Mawan N; Soilueang P; Khongdee N
    MethodsX; 2024 Jun; 12():102566. PubMed ID: 38287962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating
    Yuan Y; Wang X; Shi M; Wang P
    Front Plant Sci; 2022; 13():928953. PubMed ID: 35937316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Nitrogen status diagnosis of rice by using a digital camera].
    Jia LL; Fan MS; Zhang FS; Chen XP; Lü SH; Sun YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2176-9. PubMed ID: 19839333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India.
    Das B; Nair B; Reddy VK; Venkatesh P
    Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.
    Yang H; Li J; Yang J; Wang H; Zou J; He J
    PLoS One; 2014; 9(2):e88421. PubMed ID: 24520386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Detection on SPAD Value of Potato Plant Using an In-Field Spectral Imaging Sensor System.
    Liu N; Liu G; Sun H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana.
    Ling Q; Huang W; Jarvis P
    Photosynth Res; 2011 Feb; 107(2):209-14. PubMed ID: 21188527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [SPAD prediction of leave based on reflection spectroscopy].
    Yang HQ; Yao JS; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1607-10. PubMed ID: 19810542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of SPAD value in waterlogged winter wheat based on characteristic indices of hyperspectral and digital image.
    Gao XM; Li YL; Lu BL; Xiong QX; Wu QX; Li JF
    Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):959-966. PubMed ID: 33754562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine.
    Yang Z; Tian J; Feng K; Gong X; Liu J
    Plant Physiol Biochem; 2021 Sep; 166():723-737. PubMed ID: 34214782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spad value varies with age and leaf of maize plant and its relationship with grain yield.
    Kandel BP
    BMC Res Notes; 2020 Oct; 13(1):475. PubMed ID: 33032652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique].
    Ding XB; Liu F; Zhang C; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):486-91. PubMed ID: 25970918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Optimization of Hyperspectral Characteristic Bands Combined with Monitoring and Visualization of Pepper Leaf SPAD Value.
    Yuan Z; Ye Y; Wei L; Yang X; Huang C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.