BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35381784)

  • 21. Three-dimensional personalized Monte Carlo dosimetry in 90Y resin microspheres therapy of hepatic metastases: nontumoral liver and lungs radiation protection considerations and treatment planning optimization.
    Petitguillaume A; Bernardini M; Hadid L; de Labriolle-Vaylet C; Franck D; Desbrée A
    J Nucl Med; 2014 Mar; 55(3):405-13. PubMed ID: 24504053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of 67Ga production using the Monte Carlo code MCNPX.
    Sadeghi M; Jokar N; Kakavand T; Ghafoori Fard H; Tenreiro C
    Appl Radiat Isot; 2013 Jul; 77():14-7. PubMed ID: 23500652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact on 141Ce, 144Ce, 95Zr, and 90Sr beta emitter dose coefficients of photon and electron SAFs calculated with ICRP/ICRU reference adult voxel computational phantoms.
    Li WB; Zankl M; Schlattl H; Petoussi-Henss N; Eckerman KF; Bolch WE; Oeh U; Hoeschen C
    Health Phys; 2010 Oct; 99(4):503-10. PubMed ID: 20838091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of respiratory motion on internal radiation dosimetry.
    Xie T; Zaidi H
    Med Phys; 2014 Nov; 41(11):112506. PubMed ID: 25370665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved non-destructive method for
    Samardžić S; Milošević M; Todorović N; Lakatoš R
    Appl Radiat Isot; 2018 Jul; 137():199-204. PubMed ID: 29655125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of I-131 radioimmunotherapy tumor dosimetry: unit density sphere model versus patient-specific Monte Carlo calculations.
    Howard DM; Kearfott KJ; Wilderman SJ; Dewaraja YK
    Cancer Biother Radiopharm; 2011 Oct; 26(5):615-21. PubMed ID: 21939358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-coupled parallel strategy for Monte Carlo radiation dose calculation.
    Massa JM; Doorn JH; Wainschenker RS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1771-4. PubMed ID: 21096418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods.
    Guerra Liberal FD; Tavares AA; Tavares JM
    Med Phys; 2014 Nov; 41(11):114101. PubMed ID: 25370676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry: A Monte Carlo Study.
    Khazaee Moghadam M; Kamali Asl A; Geramifar P; Zaidi H
    Cancer Biother Radiopharm; 2016 Dec; 31(10):367-379. PubMed ID: 27996311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of S values for I
    Sinha A; Singh N; Dixit BM; Painuly NK
    J Cancer Res Ther; 2018; 14(6):1298-1302. PubMed ID: 30488847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Monte-Carlo method for interface dosimetry of beta emitters.
    Buffa FM; Verhaegen F; Flux GD; Dearnaley DP
    Cancer Biother Radiopharm; 2003 Jun; 18(3):463-71. PubMed ID: 12954134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies.
    Larsson E; Ljungberg M; Strand SE; Jönsson BA
    Acta Oncol; 2011 Aug; 50(6):973-80. PubMed ID: 21767199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: I. Clinical x-ray beams.
    Zeng GG; McEwen MR; Rogers DW; Klassen NV
    Phys Med Biol; 2004 Jan; 49(2):257-70. PubMed ID: 15083670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions.
    Titt U; Sahoo N; Ding X; Zheng Y; Newhauser WD; Zhu XR; Polf JC; Gillin MT; Mohan R
    Phys Med Biol; 2008 Aug; 53(16):4455-70. PubMed ID: 18670050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
    Dieudonné A; Hobbs RF; Bolch WE; Sgouros G; Gardin I
    J Nucl Med; 2010 Oct; 51(10):1600-7. PubMed ID: 20847175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo simulation of trabecular bone remodelling and absorbed dose coefficients for tritium and 14C.
    Richardson RB; Nie HL; Chettle DR
    Radiat Prot Dosimetry; 2007; 127(1-4):158-62. PubMed ID: 17652111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical functions for beta and gamma absorbed fractions of iodine-131 in spherical and ellipsoidal volumes.
    Mowlavi AA; Fornasier MR; Mirzaei M; Bregant P; de Denaro M
    Ann Nucl Med; 2014 Oct; 28(8):824-8. PubMed ID: 24777651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.