These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 35381967)
21. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
22. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
23. Benchmarking Inpatient Mortality Using Electronic Medical Record Data: A Retrospective, Multicenter Analytical Observational Study. Higgins TL; Freeseman-Freeman L; Stark MM; Henson KN Crit Care Med; 2022 Apr; 50(4):543-553. PubMed ID: 34582424 [TBL] [Abstract][Full Text] [Related]
24. Comparison of the Mortality Probability Admission Model III, National Quality Forum, and Acute Physiology and Chronic Health Evaluation IV hospital mortality models: implications for national benchmarking*. Kramer AA; Higgins TL; Zimmerman JE Crit Care Med; 2014 Mar; 42(3):544-53. PubMed ID: 24158174 [TBL] [Abstract][Full Text] [Related]
25. Machine learning combining CT findings and clinical parameters improves prediction of length of stay and ICU admission in torso trauma. Staziaki PV; Wu D; Rayan JC; Santo IDO; Nan F; Maybury A; Gangasani N; Benador I; Saligrama V; Scalera J; Anderson SW Eur Radiol; 2021 Jul; 31(7):5434-5441. PubMed ID: 33475772 [TBL] [Abstract][Full Text] [Related]
26. A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. Kramer AA; Zimmerman JE BMC Med Inform Decis Mak; 2010 May; 10():27. PubMed ID: 20465830 [TBL] [Abstract][Full Text] [Related]
27. Intensive care unit length of stay: recent changes and future challenges. Rosenberg AL; Zimmerman JE; Alzola C; Draper EA; Knaus WA Crit Care Med; 2000 Oct; 28(10):3465-73. PubMed ID: 11057802 [TBL] [Abstract][Full Text] [Related]
28. Using Domain Adaptation and Inductive Transfer Learning to Improve Patient Outcome Prediction in the Intensive Care Unit: Retrospective Observational Study. Mutnuri MK; Stelfox HT; Forkert ND; Lee J J Med Internet Res; 2024 Aug; 26():e52730. PubMed ID: 39167442 [TBL] [Abstract][Full Text] [Related]
29. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
30. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
31. Glasgow Coma Scale score in the evaluation of outcome in the intensive care unit: findings from the Acute Physiology and Chronic Health Evaluation III study. Bastos PG; Sun X; Wagner DP; Wu AW; Knaus WA Crit Care Med; 1993 Oct; 21(10):1459-65. PubMed ID: 8403953 [TBL] [Abstract][Full Text] [Related]
32. Early tracheostomy in intensive care trauma patients improves resource utilization: a cohort study and literature review. Arabi Y; Haddad S; Shirawi N; Al Shimemeri A Crit Care; 2004 Oct; 8(5):R347-52. PubMed ID: 15469579 [TBL] [Abstract][Full Text] [Related]
33. Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay After Intubation: A Data-Driven Machine Learning Approach. Castiñeira D; Schlosser KR; Geva A; Rahmani AR; Fiore G; Walsh BK; Smallwood CD; Arnold JH; Santillana M Respir Care; 2020 Sep; 65(9):1367-1377. PubMed ID: 32879034 [TBL] [Abstract][Full Text] [Related]
34. Predictors of outcome in cardiac surgical patients with prolonged intensive care stay. Ryan TA; Rady MY; Bashour CA; Leventhal M; Lytle B; Starr NJ Chest; 1997 Oct; 112(4):1035-42. PubMed ID: 9377914 [TBL] [Abstract][Full Text] [Related]
35. Characteristics and outcomes for critically ill patients with prolonged intensive care unit stays. Martin CM; Hill AD; Burns K; Chen LM Crit Care Med; 2005 Sep; 33(9):1922-7; quiz 1936. PubMed ID: 16148460 [TBL] [Abstract][Full Text] [Related]
36. Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICU. Yu R; Wang S; Xu J; Wang Q; He X; Li J; Shang X; Chen H; Liu Y Brain Inj; 2021 Dec; 35(14):1658-1664. PubMed ID: 35080996 [TBL] [Abstract][Full Text] [Related]
37. [Analysis of risk factors of prolonged intensive care unit stay of critically ill obstetric patients: a 5-year retrospective review in 3 hospitals in Beijing]. Lin Y; Zhu X; Liu F; Zhao YY; Du J; Yao GQ; Li WX; Jia XJ Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2011 Aug; 23(8):449-53. PubMed ID: 21878165 [TBL] [Abstract][Full Text] [Related]
38. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
39. The weekend effect for stroke patients admitted to intensive care: A retrospective cohort analysis. Mitchell WG; Pande R; Robinson TE; Jones GD; Hou I; Celi LA PLoS One; 2020; 15(6):e0234521. PubMed ID: 32520977 [TBL] [Abstract][Full Text] [Related]
40. [An interpretable machine learning-based prediction model for risk of death for patients with ischemic stroke in intensive care unit]. Luo X; Cheng Y; Wu C; He J Nan Fang Yi Ke Da Xue Xue Bao; 2023 Jul; 43(7):1241-1247. PubMed ID: 37488807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]