These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 35382264)

  • 41. Numerical Simulation and Parameter Optimization for Water-to-CO
    Deng X; Fu M; Li J; Hu J; Li G; Meng F
    ACS Omega; 2024 Feb; 9(8):9655-9665. PubMed ID: 38434820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental Study on Multi-Dimensional Visualization Simulation of Gas and Gel Foam Flooding in Fractured-Vuggy Reservoirs.
    Wen Y; Hou J
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular Dynamics Study on the Diffusion Mass Transfer Behaviour of CO
    Wang S; Cheng Q; Li Z; Qi Y; Liu Y
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing the Oil Recovery from Naturally Fractured Reservoirs Using Viscoelastic Surfactant (VES) Flooding: A Field-Scale Simulation.
    Ahmed ME; Hassan AM; Sultan AS; Mahmoud M
    ACS Omega; 2022 Jan; 7(1):504-517. PubMed ID: 35036719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of the Influencing Factors on the Extraction of Residual Oil through the Gel Foam Flooding of Underground Reservoirs in the Tahe Oilfield.
    Li CM; Hou JR; Wen YC; Liang T
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of CO
    Cho J; Min B; Jeong MS; Lee YW; Lee KS
    Sci Rep; 2021 Mar; 11(1):2082. PubMed ID: 33654158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel.
    Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W
    Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery rates, enhanced oil recovery and technological limits.
    Muggeridge A; Cockin A; Webb K; Frampton H; Collins I; Moulds T; Salino P
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120320. PubMed ID: 24298076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrostatic Origins of CO
    Chen Y; Sari A; Xie Q; Brady PV; Hossain MM; Saeedi A
    Sci Rep; 2018 Dec; 8(1):17691. PubMed ID: 30523289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Phase-Dependent Dielectric Properties of Alumina Nanoparticles in Electromagnetic-Assisted Enhanced Oil Recovery.
    Adil M; Lee KC; Zaid HM; Manaka T
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs.
    Li X; Pu C; Chen X; Huang F; Zheng H
    Ultrason Sonochem; 2021 Jan; 70():105291. PubMed ID: 32763749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS
    Zhang L; Liu Y; Wang Z; Li H; Zhao Y; Pan Y; Liu Y; Yuan W; Hou J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of the Injection Scheme on the Enhanced Oil Recovery Ability of Heterogeneous Phase Combination Flooding in Mature Waterflooded Reservoirs.
    Liu W; He H; Yuan F; Liu H; Zhao F; Liu H; Luo G
    ACS Omega; 2022 Jul; 7(27):23511-23520. PubMed ID: 35847246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental Investigations and MD Simulation on Nanoparticle-Enhanced CO
    Gao Q; Wang B; Trivedi J; Xu X; Liu S
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):43647-43660. PubMed ID: 39106148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematic Review of Solubility, Thickening Properties and Mechanisms of Thickener for Supercritical Carbon Dioxide.
    Wang X; Zhang Q; Liang S; Zhao S
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.
    Cooney G; Littlefield J; Marriott J; Skone TJ
    Environ Sci Technol; 2015 Jun; 49(12):7491-500. PubMed ID: 25992466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the Driving Effect of the CO
    Dong Y; Hu H; Wang R; Wang S; Meng W; Chen Z; Tang S
    ACS Omega; 2023 Feb; 8(6):5625-5633. PubMed ID: 36816645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study on Oil and Gas Amphiphilic Surfactants Promoting the Miscibility of CO
    Kuang N; Yang S; Yuan Z; Wang M; Zhang Z; Zhang X; Wang M; Zhang Y; Li S; Wu J; Lv W
    ACS Omega; 2021 Oct; 6(41):27170-27182. PubMed ID: 34693137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using starch graft copolymer gel to assist the CO
    Hao H; Yuan D; Hou J; Guo W; Liu H
    RSC Adv; 2022 Jul; 12(31):19990-20003. PubMed ID: 35865207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.