BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35382456)

  • 1. SuperDendrix algorithm integrates genetic dependencies and genomic alterations across pathways and cancer types.
    Park TY; Leiserson MDM; Klau GW; Raphael BJ
    Cell Genom; 2022 Feb; 2(2):. PubMed ID: 35382456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization.
    Pacini C; Duncan E; Gonçalves E; Gilbert J; Bhosle S; Horswell S; Karakoc E; Lightfoot H; Curry E; Muyas F; Bouaboula M; Pedamallu CS; Cortes-Ciriano I; Behan FM; Zalmas LP; Barthorpe A; Francies H; Rowley S; Pollard J; Beltrao P; Parts L; Iorio F; Garnett MJ
    Cancer Cell; 2024 Feb; 42(2):301-316.e9. PubMed ID: 38215750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the landscape of genetic dependencies in chordoma.
    Sharifnia T; Wawer MJ; Goodale A; Lee Y; Kazachkova M; Dempster JM; Muller S; Levy J; Freed DM; Sommer J; Kalfon J; Vazquez F; Hahn WC; Root DE; Clemons PA; Schreiber SL
    Nat Commun; 2023 Apr; 14(1):1933. PubMed ID: 37024492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Lethal Dependencies with HUGE Predictive Power.
    Gimeno M; San José-Enériz E; Rubio A; Garate L; Miranda E; Castilla C; Agirre X; Prosper F; Carazo F
    Cancers (Basel); 2022 Jul; 14(13):. PubMed ID: 35805023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon.
    Pons G; Gallo-Oller G; Navarro N; Zarzosa P; Sansa-Girona J; García-Gilabert L; Magdaleno A; Segura MF; Sánchez de Toledo J; Gallego S; Moreno L; Roma J
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRISPR Competition Assay to Identify Cancer Genetic Dependencies.
    Girish V; Sheltzer JM
    Bio Protoc; 2020 Jul; 10(14):e3682. PubMed ID: 33659353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
    Cowley GS; Weir BA; Vazquez F; Tamayo P; Scott JA; Rusin S; East-Seletsky A; Ali LD; Gerath WF; Pantel SE; Lizotte PH; Jiang G; Hsiao J; Tsherniak A; Dwinell E; Aoyama S; Okamoto M; Harrington W; Gelfand E; Green TM; Tomko MJ; Gopal S; Wong TC; Li H; Howell S; Stransky N; Liefeld T; Jang D; Bistline J; Hill Meyers B; Armstrong SA; Anderson KC; Stegmaier K; Reich M; Pellman D; Boehm JS; Mesirov JP; Golub TR; Root DE; Hahn WC
    Sci Data; 2014; 1():140035. PubMed ID: 25984343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer.
    Cheung HW; Cowley GS; Weir BA; Boehm JS; Rusin S; Scott JA; East A; Ali LD; Lizotte PH; Wong TC; Jiang G; Hsiao J; Mermel CH; Getz G; Barretina J; Gopal S; Tamayo P; Gould J; Tsherniak A; Stransky N; Luo B; Ren Y; Drapkin R; Bhatia SN; Mesirov JP; Garraway LA; Meyerson M; Lander ES; Root DE; Hahn WC
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12372-7. PubMed ID: 21746896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene
    Bailey ML; Tieu D; Habsid A; Tong AHY; Chan K; Moffat J; Hieter P
    Life Sci Alliance; 2021 Nov; 4(11):. PubMed ID: 34462321
    [No Abstract]   [Full Text] [Related]  

  • 10. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CoRe: a robustly benchmarked R package for identifying core-fitness genes in genome-wide pooled CRISPR-Cas9 screens.
    Vinceti A; Karakoc E; Pacini C; Perron U; De Lucia RR; Garnett MJ; Iorio F
    BMC Genomics; 2021 Nov; 22(1):828. PubMed ID: 34789150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring cancer dependencies on metabolic genes from large-scale genetic screens.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Apr; 17(1):37. PubMed ID: 31039782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage-Selective Dependencies in Pediatric Cancers.
    Ritter KE; Durbin AD
    Cold Spring Harb Perspect Med; 2024 May; ():. PubMed ID: 38806246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
    Iorio F; Behan FM; Gonçalves E; Bhosle SG; Chen E; Shepherd R; Beaver C; Ansari R; Pooley R; Wilkinson P; Harper S; Butler AP; Stronach EA; Saez-Rodriguez J; Yusa K; Garnett MJ
    BMC Genomics; 2018 Aug; 19(1):604. PubMed ID: 30103702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined gene essentiality scoring improves the prediction of cancer dependency maps.
    Wang W; Malyutina A; Pessia A; Saarela J; Heckman CA; Tang J
    EBioMedicine; 2019 Dec; 50():67-80. PubMed ID: 31732481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering functional evolutionary dependencies in human cancers.
    Mina M; Iyer A; Tavernari D; Raynaud F; Ciriello G
    Nat Genet; 2020 Nov; 52(11):1198-1207. PubMed ID: 32989323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused CRISPR-Cas9 genetic screening reveals USO1 as a vulnerability in B-cell acute lymphoblastic leukemia.
    Jaiswal AK; Truong H; Tran TM; Lin TL; Casero D; Alberti MO; Rao DS
    Sci Rep; 2021 Jun; 11(1):13158. PubMed ID: 34162911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.
    Wang T; Yu H; Hughes NW; Liu B; Kendirli A; Klein K; Chen WW; Lander ES; Sabatini DM
    Cell; 2017 Feb; 168(5):890-903.e15. PubMed ID: 28162770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.
    McFarland JM; Ho ZV; Kugener G; Dempster JM; Montgomery PG; Bryan JG; Krill-Burger JM; Green TM; Vazquez F; Boehm JS; Golub TR; Hahn WC; Root DE; Tsherniak A
    Nat Commun; 2018 Nov; 9(1):4610. PubMed ID: 30389920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma.
    Dubrot J; Lane-Reticker SK; Kessler EA; Ayer A; Mishra G; Wolfe CH; Zimmer MD; Du PP; Mahapatra A; Ockerman KM; Davis TGR; Kohnle IC; Pope HW; Allen PM; Olander KE; Iracheta-Vellve A; Doench JG; Haining WN; Yates KB; Manguso RT
    Immunity; 2021 Mar; 54(3):571-585.e6. PubMed ID: 33497609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.