These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35382584)

  • 1. Tropical ant community responses to experimental soil warming.
    Bujan J; Nottingham AT; Velasquez E; Meir P; Kaspari M; Yanoviak SP
    Biol Lett; 2022 Apr; 18(4):20210518. PubMed ID: 35382584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrition modifies critical thermal maximum of a dominant canopy ant.
    Bujan J; Kaspari M
    J Insect Physiol; 2017 Oct; 102():1-6. PubMed ID: 28830761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants.
    Leahy L; Scheffers BR; Williams SE; Andersen AN
    Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatic warming destabilizes forest ant communities.
    Diamond SE; Nichols LM; Pelini SL; Penick CA; Barber GW; Cahan SH; Dunn RR; Ellison AM; Sanders NJ; Gotelli NJ
    Sci Adv; 2016 Oct; 2(10):e1600842. PubMed ID: 27819044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using historical and experimental data to reveal warming effects on ant assemblages.
    Resasco J; Pelini SL; Stuble KL; Sanders NJ; Dunn RR; Diamond SE; Ellison AM; Gotelli NJ; Levey DJ
    PLoS One; 2014; 9(2):e88029. PubMed ID: 24505364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental warming and its legacy effects on root dynamics following two hurricane disturbances in a wet tropical forest.
    Yaffar D; Wood TE; Reed SC; Branoff BL; Cavaleri MA; Norby RJ
    Glob Chang Biol; 2021 Dec; 27(24):6423-6435. PubMed ID: 34469626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal plasticity of thermal tolerance in ants.
    Bujan J; Roeder KA; Yanoviak SP; Kaspari M
    Ecology; 2020 Jun; 101(6):e03051. PubMed ID: 32239508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C; Baer CS
    J Evol Biol; 2021 Sep; 34(9):1432-1446. PubMed ID: 34265126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.
    Nguyen AD; DeNovellis K; Resendez S; Pustilnik JD; Gotelli NJ; Parker JD; Cahan SH
    J Comp Physiol B; 2017 Dec; 187(8):1107-1116. PubMed ID: 28439669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heated communities: large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community.
    Franken O; Huizinga M; Ellers J; Berg MP
    Oecologia; 2018 Feb; 186(2):311-322. PubMed ID: 29224117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social Factors in Heat Survival: Multiqueen Desert Ant Colonies Have Higher and More Uniform Heat Tolerance.
    Baudier KM; Ostwald MM; Haney BR; Calixto JM; Cossio FJ; Fewell JH
    Physiol Biochem Zool; 2022; 95(5):379-389. PubMed ID: 35914287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral response to heat stress of twig-nesting canopy ants.
    Bujan J; Yanoviak SP
    Oecologia; 2022 Apr; 198(4):947-955. PubMed ID: 35254505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming.
    Turriago JL; Tejedo M; Hoyos JM; Bernal MH
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiological trait-based approach to predicting the responses of species to experimental climate warming.
    Diamond SE; Nichols LM; McCoy N; Hirsch C; Pelini SL; Sanders NJ; Ellison AM; Gotelli NJ; Dunn RR
    Ecology; 2012 Nov; 93(11):2305-12. PubMed ID: 23236901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ant nests increase litter decomposition to mitigate the negative effect of warming in an alpine grassland ecosystem.
    Luo B; Huang M; Wang W; Niu J; Shrestha M; Zeng H; Ma L; Degen AA; Liao J; Zhang T; Bai Y; Zhao J; Fraser LH; Shang Z
    Proc Biol Sci; 2023 Jun; 290(2001):20230613. PubMed ID: 37369352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.