These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 35382811)
1. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification. Li X; Yuan W; Peng D; Mei Q; Wang Y BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811 [TBL] [Abstract][Full Text] [Related]
2. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
3. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
4. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. Rasmy L; Xiang Y; Xie Z; Tao C; Zhi D NPJ Digit Med; 2021 May; 4(1):86. PubMed ID: 34017034 [TBL] [Abstract][Full Text] [Related]
5. RadBERT: Adapting Transformer-based Language Models to Radiology. Yan A; McAuley J; Lu X; Du J; Chang EY; Gentili A; Hsu CN Radiol Artif Intell; 2022 Jul; 4(4):e210258. PubMed ID: 35923376 [TBL] [Abstract][Full Text] [Related]
6. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation. Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671 [TBL] [Abstract][Full Text] [Related]
7. BioBERT and Similar Approaches for Relation Extraction. Bhasuran B Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867 [TBL] [Abstract][Full Text] [Related]
8. BERT-based Transfer Learning in Sentence-level Anatomic Classification of Free-Text Radiology Reports. Nishigaki D; Suzuki Y; Wataya T; Kita K; Yamagata K; Sato J; Kido S; Tomiyama N Radiol Artif Intell; 2023 Mar; 5(2):e220097. PubMed ID: 37035437 [TBL] [Abstract][Full Text] [Related]
9. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study. Mitchell JR; Szepietowski P; Howard R; Reisman P; Jones JD; Lewis P; Fridley BL; Rollison DE J Med Internet Res; 2022 Mar; 24(3):e27210. PubMed ID: 35319481 [TBL] [Abstract][Full Text] [Related]
10. Comparison of different feature extraction methods for applicable automated ICD coding. Shuai Z; Xiaolin D; Jing Y; Yanni H; Meng C; Yuxin W; Wei Z BMC Med Inform Decis Mak; 2022 Jan; 22(1):11. PubMed ID: 35022039 [TBL] [Abstract][Full Text] [Related]
11. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework. Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395 [TBL] [Abstract][Full Text] [Related]
12. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT). Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966 [TBL] [Abstract][Full Text] [Related]
13. Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision. Shen Z; Schutte D; Yi Y; Bompelli A; Yu F; Wang Y; Zhang R BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 1):88. PubMed ID: 35799294 [TBL] [Abstract][Full Text] [Related]
14. Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech. Balagopalan A; Eyre B; Robin J; Rudzicz F; Novikova J Front Aging Neurosci; 2021; 13():635945. PubMed ID: 33986655 [No Abstract] [Full Text] [Related]
15. Limitations of Transformers on Clinical Text Classification. Gao S; Alawad M; Young MT; Gounley J; Schaefferkoetter N; Yoon HJ; Wu XC; Durbin EB; Doherty J; Stroup A; Coyle L; Tourassi G IEEE J Biomed Health Inform; 2021 Sep; 25(9):3596-3607. PubMed ID: 33635801 [TBL] [Abstract][Full Text] [Related]
16. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885 [TBL] [Abstract][Full Text] [Related]
17. Natural language processing and machine learning approaches for food categorization and nutrition quality prediction compared with traditional methods. Hu G; Ahmed M; L'Abbé MR Am J Clin Nutr; 2023 Mar; 117(3):553-563. PubMed ID: 36872019 [TBL] [Abstract][Full Text] [Related]
18. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning-Based Solution. Gatto J; Seegmiller P; Johnston G; Preum SM JMIR Med Inform; 2022 Sep; 10(9):e37770. PubMed ID: 35981230 [TBL] [Abstract][Full Text] [Related]
19. Transformers-sklearn: a toolkit for medical language understanding with transformer-based models. Yang F; Wang X; Ma H; Li J BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):90. PubMed ID: 34330244 [TBL] [Abstract][Full Text] [Related]
20. Benchmarking for biomedical natural language processing tasks with a domain specific ALBERT. Naseem U; Dunn AG; Khushi M; Kim J BMC Bioinformatics; 2022 Apr; 23(1):144. PubMed ID: 35448946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]