These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35383051)

  • 1. Heterozygous variants c.781G>A and c.1066dup of
    Wu W; Xu J; Yin H; Fu C; Yao K; Chen X
    Br J Ophthalmol; 2023 Nov; 107(11):1750-1756. PubMed ID: 35383051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in a novel serine protease PRSS56 in families with nanophthalmos.
    Orr A; Dubé MP; Zenteno JC; Jiang H; Asselin G; Evans SC; Caqueret A; Lakosha H; Letourneau L; Marcadier J; Matsuoka M; Macgillivray C; Nightingale M; Papillon-Cavanagh S; Perry S; Provost S; Ludman M; Guernsey DL; Samuels ME
    Mol Vis; 2011; 17():1850-61. PubMed ID: 21850159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic variants of
    Ota J; Inooka T; Okado S; Maeda N; Koyanagi Y; Kominami T; Nishiguchi KM; Ueno S
    Ophthalmic Genet; 2023 Oct; 44(5):423-429. PubMed ID: 37501562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel TMEM98, MFRP, PRSS56 variants in a large United States high hyperopia and nanophthalmos cohort.
    Prasov L; Guan B; Ullah E; Archer SM; Ayres BM; Besirli CG; Wiinikka-Buesser L; Comer GM; Del Monte MA; Elner SG; Garnai SJ; Huryn LA; Johnson K; Kamat SS; Lieu P; Mian SI; Rygiel CA; Serpen JY; Pawar HS; Brooks BP; Moroi SE; Richards JE; Hufnagel RB
    Sci Rep; 2020 Nov; 10(1):19986. PubMed ID: 33203948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype-phenotype spectrum in isolated and syndromic nanophthalmos.
    Lang E; Koller S; Atac D; Pfäffli OA; Hanson JVM; Feil S; Bähr L; Bahr A; Kottke R; Joset P; Fasler K; Barthelmes D; Steindl K; Konrad D; Wille DA; Berger W; Gerth-Kahlert C
    Acta Ophthalmol; 2021 Jun; 99(4):e594-e607. PubMed ID: 32996714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Clinically Relevant Genetic Variants in Chinese Patients With Nanophthalmos by Trio-Based Whole-Genome Sequencing Study.
    Guo C; Zhao Z; Chen D; He S; Sun N; Li Z; Liu J; Zhang D; Zhang J; Li J; Zhang M; Ge J; Liu X; Zhang X; Fan Z
    Invest Ophthalmol Vis Sci; 2019 Jul; 60(8):2904-2913. PubMed ID: 31266062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic and clinical landscape of nanophthalmos and posterior microphthalmos in an Australian cohort.
    Siggs OM; Awadalla MS; Souzeau E; Staffieri SE; Kearns LS; Laurie K; Kuot A; Qassim A; Edwards TL; Coote MA; Mancel E; Walland MJ; Dondey J; Galanopoulous A; Casson RJ; Mills RA; MacArthur DG; Ruddle JB; Burdon KP; Craig JE
    Clin Genet; 2020 May; 97(5):764-769. PubMed ID: 32052405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel
    Dudakova L; Skalicka P; Ulmanová O; Hlozanek M; Stranecky V; Malinka F; Vincent AL; Liskova P
    J Ophthalmol; 2020; 2020():6807809. PubMed ID: 32454992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical features of patients with mutations in genes for nanophthalmos.
    Li X; Xiao H; Su Y; Xiao X; Li S; Lin S; Fang L; Sun W; Wang P; Hejtmancik JF; Yu M; Chen L; Zhang Q; Liu X
    Br J Ophthalmol; 2024 May; ():. PubMed ID: 38749530
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Li Z; Ma R; Ma M; Xiao X; Qi X; Ma H; Sheng X; Rong W
    Front Genet; 2024; 15():1407361. PubMed ID: 39076172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mutations in
    Bacci GM; Bargiacchi S; Fortunato P; Pisaneschi E; Peluso F; Marziali E; Magli A; Giglio SR; Caputo R
    Ophthalmic Genet; 2020 Feb; 41(1):49-56. PubMed ID: 32118495
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of MFRP and the secreted serine proteases PRSS56 and ADAMTS19 as part of a molecular network involved in ocular growth regulation.
    Koli S; Labelle-Dumais C; Zhao Y; Paylakhi S; Nair KS
    PLoS Genet; 2021 Mar; 17(3):e1009458. PubMed ID: 33755662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56.
    Almoallem B; Arno G; De Zaeytijd J; Verdin H; Balikova I; Casteels I; de Ravel T; Hull S; Suzani M; Destrée A; Peng M; Williams D; Ainsworth JR; Webster AR; Leroy BP; Moore AT; De Baere E
    Sci Rep; 2020 Jan; 10(1):1289. PubMed ID: 31992737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease.
    Gal A; Rau I; El Matri L; Kreienkamp HJ; Fehr S; Baklouti K; Chouchane I; Li Y; Rehbein M; Fuchs J; Fledelius HC; Vilhelmsen K; Schorderet DF; Munier FL; Ostergaard E; Thompson DA; Rosenberg T
    Am J Hum Genet; 2011 Mar; 88(3):382-90. PubMed ID: 21397065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos.
    Khorram D; Choi M; Roos BR; Stone EM; Kopel T; Allen R; Alward WL; Scheetz TE; Fingert JH
    Mol Vis; 2015; 21():1017-23. PubMed ID: 26392740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biometric and molecular characterization of clinically diagnosed posterior microphthalmos.
    Nowilaty SR; Khan AO; Aldahmesh MA; Tabbara KF; Al-Amri A; Alkuraya FS
    Am J Ophthalmol; 2013 Feb; 155(2):361-372.e7. PubMed ID: 23127749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophthalmos: A Review of the Clinical Spectrum and Genetics.
    Carricondo PC; Andrade T; Prasov L; Ayres BM; Moroi SE
    J Ophthalmol; 2018; 2018():2735465. PubMed ID: 29862063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12.
    Awadalla MS; Burdon KP; Souzeau E; Landers J; Hewitt AW; Sharma S; Craig JE
    JAMA Ophthalmol; 2014 Aug; 132(8):970-7. PubMed ID: 24852644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs.
    Soundararajan R; Won J; Stearns TM; Charette JR; Hicks WL; Collin GB; Naggert JK; Krebs MP; Nishina PM
    PLoS One; 2014; 9(10):e110299. PubMed ID: 25357075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error.
    Paylakhi S; Labelle-Dumais C; Tolman NG; Sellarole MA; Seymens Y; Saunders J; Lakosha H; deVries WN; Orr AC; Topilko P; John SW; Nair KS
    PLoS Genet; 2018 Mar; 14(3):e1007244. PubMed ID: 29529029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.