These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35383189)

  • 1. Ultraviolet optical horn antennas for label-free detection of single proteins.
    Barulin A; Roy P; Claude JB; Wenger J
    Nat Commun; 2022 Apr; 13(1):1842. PubMed ID: 35383189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan.
    Roy P; Claude JB; Tiwari S; Barulin A; Wenger J
    Nano Lett; 2023 Jan; 23(2):497-504. PubMed ID: 36603115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
    Roy P; Zhu S; Claude JB; Liu J; Wenger J
    ACS Nano; 2023 Nov; 17(22):22418-22429. PubMed ID: 37931219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet Photostability Improvement for Autofluorescence Correlation Spectroscopy on Label-Free Proteins.
    Barulin A; Wenger J
    J Phys Chem Lett; 2020 Mar; 11(6):2027-2035. PubMed ID: 32083877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.
    Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration.
    Punj D; de Torres J; Rigneault H; Wenger J
    Opt Express; 2013 Nov; 21(22):27338-43. PubMed ID: 24216956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.
    Kim J; Song H; Park I; Carlisle CR; Bonin K; Guthold M
    Microsc Res Tech; 2011 Mar; 74(3):219-24. PubMed ID: 20597072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations.
    Punj D; Mivelle M; Moparthi SB; van Zanten TS; Rigneault H; van Hulst NF; García-Parajó MF; Wenger J
    Nat Nanotechnol; 2013 Jul; 8(7):512-6. PubMed ID: 23748196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New trends in single-molecule bioanalytical detection.
    Macchia E; Manoli K; Di Franco C; Scamarcio G; Torsi L
    Anal Bioanal Chem; 2020 Aug; 412(21):5005-5014. PubMed ID: 32185439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.
    Mivelle M; Van Zanten TS; Manzo C; Garcia-Parajo MF
    Microsc Res Tech; 2014 Jul; 77(7):537-45. PubMed ID: 24710842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.
    Bhartia R; Salas EC; Hug WF; Reid RD; Lane AL; Edwards KJ; Nealson KH
    Appl Environ Microbiol; 2010 Nov; 76(21):7231-7. PubMed ID: 20817797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing single-molecule fluorescence with nanophotonics.
    Acuna G; Grohmann D; Tinnefeld P
    FEBS Lett; 2014 Oct; 588(19):3547-52. PubMed ID: 24928436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time background-free selective imaging of fluorescent nanodiamonds in vivo.
    Igarashi R; Yoshinari Y; Yokota H; Sugi T; Sugihara F; Ikeda K; Sumiya H; Tsuji S; Mori I; Tochio H; Harada Y; Shirakawa M
    Nano Lett; 2012 Nov; 12(11):5726-32. PubMed ID: 23066639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.
    Vietz C; Kaminska I; Sanz Paz M; Tinnefeld P; Acuna GP
    ACS Nano; 2017 May; 11(5):4969-4975. PubMed ID: 28445644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free fluorescent molecular beacon based on a small fluorescent molecule non-covalently bound to the intentional gap site in the stem moiety.
    Gao Q; Lin K; Zhang H; Qi H; Zhang C
    Talanta; 2010 Dec; 83(2):535-40. PubMed ID: 21111170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral characterization of Dictyostelium autofluorescence.
    Engel R; Van Haastert PJ; Visser AJ
    Microsc Res Tech; 2006 Mar; 69(3):168-74. PubMed ID: 16538623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.
    Vietz C; Lalkens B; Acuna GP; Tinnefeld P
    Nano Lett; 2017 Oct; 17(10):6496-6500. PubMed ID: 28956440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.