BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35383228)

  • 21. Intravascular ultrasound and ultrasonic flow ratio-guided zero-contrast rotational atherectomy for calcified coronary lesions.
    Chen T; Zhou H; Guo J; Chen Y
    Eur Heart J; 2023 Jan; 44(2):166. PubMed ID: 36100554
    [No Abstract]   [Full Text] [Related]  

  • 22. Mean density of computed tomography for predicting rotational atherectomy during percutaneous coronary intervention.
    Kurogi K; Ishii M; Nagatomo T; Tokai T; Kaichi R; Takae M; Mori T; Komaki S; Yamamoto N; Tsujita K
    J Cardiovasc Comput Tomogr; 2023; 17(2):120-129. PubMed ID: 36775780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics.
    Sakakura K; Ito Y; Shibata Y; Okamura A; Kashima Y; Nakamura S; Hamazaki Y; Ako J; Yokoi H; Kobayashi Y; Ikari Y
    Cardiovasc Interv Ther; 2021 Jan; 36(1):1-18. PubMed ID: 33079355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study design and rationale for comparison of the incidence of slow flow following rotational atherectomy to severely calcified coronary artery lesions between short single session and long single session: The randomized ROTASOLO trial.
    Sakakura K; Jinnouchi H; Taniguchi Y; Tsukui T; Watanabe Y; Yamamoto K; Seguchi M; Wada H; Tsurumaki Y; Mase T; Tamanaha Y; Arao K; Kubo N; Fujita H
    Cardiol J; 2023; 30(3):483-488. PubMed ID: 37165803
    [No Abstract]   [Full Text] [Related]  

  • 25. Secondary rotational atherectomy is associated with reduced occurrence of prolonged ST-segment elevation following ablation.
    Kanda D; Takumi T; Arikawa R; Anzaki K; Sonoda T; Ohmure K; Fukumoto D; Tokushige A; Ohishi M
    Intern Emerg Med; 2023 Oct; 18(7):1995-2002. PubMed ID: 37566359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrepancy of calcium detection between gray scale intravascular ultrasound and spectral analysis of radiofrequency data.
    Kwon TG; Seo YH; Lee CS; Yang DJ; Song IG; Park HW; Kim KH; Kim WH; Bae JH
    Int J Cardiol; 2013 Sep; 167(6):2611-6. PubMed ID: 22819606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intensive plaque modification with rotational atherectomy and cutting balloon before drug-eluting stent implantation for patients with severely calcified coronary lesions: a pilot clinical study.
    Li Q; He Y; Chen L; Chen M
    BMC Cardiovasc Disord; 2016 May; 16():112. PubMed ID: 27230875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Safety and Efficacy of Immediate Rotational Atherectomy in Nondilatable Calcified Coronary Lesions Complicated by Coronary Artery Dissection (RAISE).
    Zhang D; Hu J; Man W; Wang T; Zhang M; Lin J; Narsinh K; Zhang L; Li C; Sun D
    J Interv Cardiol; 2015 Oct; 28(5):456-63. PubMed ID: 26489973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thin-strut drug-eluting stents are more favorable for severe calcified lesions after rotational atherectomy than thick-strut drug-eluting stents.
    Lee Y; Tanaka A; Mori N; Yoshimura T; Nakamura D; Taniike M; Makino N; Egami Y; Shutta R; Tanouchi J; Nishino M
    J Invasive Cardiol; 2014 Feb; 26(2):41-5. PubMed ID: 24486659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orbital atherectomy for the treatment of severely calcified coronary lesions: evidence, technique, and best practices.
    Shlofmitz E; Martinsen BJ; Lee M; Rao SV; Généreux P; Higgins J; Chambers JW; Kirtane AJ; Brilakis ES; Kandzari DE; Sharma SK; Shlofmitz R
    Expert Rev Med Devices; 2017 Nov; 14(11):867-879. PubMed ID: 28945162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orbital atherectomy versus rotational atherectomy: A systematic review and meta-analysis.
    Goel S; Pasam RT; Chava S; Gotesman J; Sharma A; Malik BA; Frankel R; Shani J; Gidwani U; Latib A
    Int J Cardiol; 2020 Mar; 303():16-21. PubMed ID: 31898984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potent Stent-Less Procedure Using Rotational Atherectomy and Drug-Coated Balloon to Right Coronary Ostial Lesion.
    Shiraishi J; Nishimura T; Kimura M; Koshi N; Matsubara Y; Ito D; Kishita E; Nakagawa Y; Hyogo M; Sawada T
    Cardiovasc Revasc Med; 2019 Sep; 20(9):822-826. PubMed ID: 30579774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological and angiographic outcomes of PCI in calcified lesions after rotational atherectomy or intravascular lithotripsy.
    Gallinoro E; Monizzi G; Sonck J; Candreva A; Mileva N; Nagumo S; Munhoz D; Buytaert D; Mastrangelo A; Andreini D; Galli S; Bartorelli AL; Barbato E; De Bruyne B; Collet C
    Int J Cardiol; 2022 Apr; 352():27-32. PubMed ID: 35120947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility and clinical outcomes of rotational atherectomy for heavily-calcified side branches of complex coronary bifurcation lesions in the real-world practice of the drug-eluting stent era.
    Chen YW; Su CS; Chang WC; Liu TJ; Liang KW; Lai CH; Liu HX; Lee WL
    J Interv Cardiol; 2018 Aug; 31(4):486-495. PubMed ID: 29667231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical frequency-domain imaging findings to predict good stent expansion after rotational atherectomy for severely calcified coronary lesions.
    Kobayashi N; Ito Y; Yamawaki M; Araki M; Sakai T; Sakamoto Y; Mori S; Tsutsumi M; Nauchi M; Honda Y; Tokuda T; Makino K; Shirai S; Hirano K
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):867-874. PubMed ID: 29318407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the Efficacy and Safety of Orbital and Rotational Atherectomy in Calcified Narrowings in Patients Who Underwent Percutaneous Coronary Intervention.
    Koifman E; Garcia-Garcia HM; Kuku KO; Kajita AH; Buchanan KD; Steinvil A; Rogers T; Bernardo NL; Lager R; Gallino RA; Ben-Dor I; Pichard AD; Torguson R; Gai J; Satler LF; Waksman R
    Am J Cardiol; 2018 Apr; 121(8):934-939. PubMed ID: 29452688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictors of vessel quantitative flow ratio loss in patients with severely calcified lesions after rotational atherectomy.
    Zhou YH; Xu HM; Zhao YY; Zhu JD; Xu Y; Xu HH; Wang YQ; Hu ZP
    Cardiol J; 2023; 30(3):353-360. PubMed ID: 36200544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics and Pattern of Calcified Nodule and/or Nodular Calcification Detected by Intravascular Ultrasound on the Device-Oriented Composite Endpoint (DoCE) in Patients with Heavily Calcified Lesions Who Underwent Rotational Atherectomy-Assisted Percutaneous Coronary Intervention.
    Pengchata P; Pongakasira R; Wongsawangkit N; Phichaphop A; Wongpraparut N
    J Interv Cardiol; 2023; 2023():6456695. PubMed ID: 36721852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiographic predictors of unplanned rotational atherectomy in complex calcified coronary artery disease: a pooled analysis from the randomised ROTAXUS and PREPARE-CALC trials.
    Fitzgerald S; Allali A; Toelg R; Sulimov DS; Geist V; Kastrati A; Thiele H; Neumann FJ; Richardt G; Abdel-Wahab M
    EuroIntervention; 2022 Apr; 17(18):1506-1513. PubMed ID: 34609284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the incidence of periprocedural myocardial infarction between percutaneous coronary intervention with versus without rotational atherectomy using propensity score-matching.
    Mizuno Y; Sakakura K; Jinnouchi H; Taniguchi Y; Tsukui T; Yamamoto K; Seguchi M; Wada H; Fujita H
    Sci Rep; 2021 May; 11(1):11140. PubMed ID: 34045490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.