These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35383583)

  • 41. An angiographic and intravascular ultrasound study of the left anterior descending coronary artery in takotsubo cardiomyopathy.
    Delgado GA; Truesdell AG; Kirchner RM; Zuzek RW; Pomerantsev EV; Gordon PC; Regnante RA
    Am J Cardiol; 2011 Sep; 108(6):888-91. PubMed ID: 21741604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography.
    Wang X; Matsumura M; Mintz GS; Lee T; Zhang W; Cao Y; Fujino A; Lin Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):869-879. PubMed ID: 28797408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prevalence, Predictors, and Clinical Presentation of a Calcified Nodule as Assessed by Optical Coherence Tomography.
    Lee T; Mintz GS; Matsumura M; Zhang W; Cao Y; Usui E; Kanaji Y; Murai T; Yonetsu T; Kakuta T; Maehara A
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):883-891. PubMed ID: 28797410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gender differences in plaque characteristics of nonculprit lesions in patients with coronary artery disease.
    Tian J; Wang X; Tian J; Yu B
    BMC Cardiovasc Disord; 2019 Feb; 19(1):45. PubMed ID: 30808307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of Artificial Intelligence in Echocardiography Diagnostics in Differentiating Takotsubo Syndrome From Myocardial Infarction.
    Laumer F; Di Vece D; Cammann VL; Würdinger M; Petkova V; Schönberger M; Schönberger A; Mercier JC; Niederseer D; Seifert B; Schwyzer M; Burkholz R; Corinzia L; Becker AS; Scherff F; Brouwers S; Pazhenkottil AP; Dougoud S; Messerli M; Tanner FC; Fischer T; Delgado V; Schulze PC; Hauck C; Maier LS; Nguyen H; Surikow SY; Horowitz J; Liu K; Citro R; Bax J; Ruschitzka F; Ghadri JR; Buhmann JM; Templin C
    JAMA Cardiol; 2022 May; 7(5):494-503. PubMed ID: 35353118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical Significance of the Presence or Absence of Lipid-Rich Plaque Underneath Intact Fibrous Cap Plaque in Acute Coronary Syndrome.
    Hoshino M; Yonetsu T; Usui E; Kanaji Y; Ohya H; Sumino Y; Yamaguchi M; Hada M; Hamaya R; Kanno Y; Murai T; Lee T; Kakuta T
    J Am Heart Assoc; 2019 May; 8(9):e011820. PubMed ID: 31057022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessing the Impact of Colchicine on Coronary Plaque Phenotype After Myocardial Infarction with Optical Coherence Tomography: Rationale and Design of the COCOMO-ACS Study.
    Montarello NJ; Singh K; Sinhal A; Wong DTL; Alcock R; Rajendran S; Dautov R; Barlis P; Patel S; Nidorf SM; Thompson PL; Salagaras T; Butters J; Nerlekar N; Di Giovanni G; Ottaway JL; Nicholls SJ; Psaltis PJ
    Cardiovasc Drugs Ther; 2022 Dec; 36(6):1175-1186. PubMed ID: 34432196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Features of coronary plaque in patients with metabolic syndrome and diabetes mellitus assessed by 3-vessel optical coherence tomography.
    Yonetsu T; Kato K; Uemura S; Kim BK; Jang Y; Kang SJ; Park SJ; Lee S; Kim SJ; Jia H; Vergallo R; Abtahian F; Tian J; Hu S; Yeh RW; Sakhuja R; McNulty I; Lee H; Zhang S; Yu B; Kakuta T; Jang IK
    Circ Cardiovasc Imaging; 2013 Sep; 6(5):665-73. PubMed ID: 23922003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endothelial progenitor cells and plaque burden in stented coronary artery segments: an optical coherence tomography study six months after elective PCI.
    Otto S; Nitsche K; Jung C; Kryvanos A; Zhylka A; Heitkamp K; Gutiérrez-Chico JL; Goebel B; Schulze PC; Figulla HR; Poerner TC
    BMC Cardiovasc Disord; 2017 Apr; 17(1):103. PubMed ID: 28441929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound.
    Jang IK; Bouma BE; Kang DH; Park SJ; Park SW; Seung KB; Choi KB; Shishkov M; Schlendorf K; Pomerantsev E; Houser SL; Aretz HT; Tearney GJ
    J Am Coll Cardiol; 2002 Feb; 39(4):604-9. PubMed ID: 11849858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Air Pollution and Coronary Plaque Vulnerability and Instability: An Optical Coherence Tomography Study.
    Montone RA; Camilli M; Russo M; Termite C; La Vecchia G; Iannaccone G; Rinaldi R; Gurgoglione F; Del Buono MG; Sanna T; Trani C; Liuzzo G; Crea F; Niccoli G
    JACC Cardiovasc Imaging; 2022 Feb; 15(2):325-342. PubMed ID: 34656488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.
    Fischer AM; Eid M; De Cecco CN; Gulsun MA; van Assen M; Nance JW; Sahbaee P; De Santis D; Bauer MJ; Jacobs BE; Varga-Szemes A; Kabakus IM; Sharma P; Jackson LJ; Schoepf UJ
    J Thorac Imaging; 2020 May; 35 Suppl 1():S49-S57. PubMed ID: 32168163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison by optical coherence tomography of the frequency of lipid coronary plaques in current smokers, former smokers, and nonsmokers.
    Abtahian F; Yonetsu T; Kato K; Jia H; Vergallo R; Tian J; Hu S; McNulty I; Lee H; Yu B; Jang IK
    Am J Cardiol; 2014 Sep; 114(5):674-80. PubMed ID: 25048344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography.
    Shimamura K; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2021 May; 19(5):379-386. PubMed ID: 33823735
    [No Abstract]   [Full Text] [Related]  

  • 56. Association between Gamma-Glutamyl Transferase and Coronary Atherosclerotic Plaque Vulnerability: An Optical Coherence Tomography Study.
    Wang J; Li X; Pu J; Jin S; Jia L; Li X; Liu F; Shan C; Yang Y
    Biomed Res Int; 2019; 2019():9602783. PubMed ID: 30984786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated diagnosis of optical coherence tomography imaging on plaque vulnerability and its relation to clinical outcomes in coronary artery disease.
    Niioka H; Kume T; Kubo T; Soeda T; Watanabe M; Yamada R; Sakata Y; Miyamoto Y; Wang B; Nagahara H; Miyake J; Akasaka T; Saito Y; Uemura S
    Sci Rep; 2022 Aug; 12(1):14067. PubMed ID: 35982217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Role of optical coherence tomography to optimize complex coronary interventions].
    Pescetelli I; Guagliumi G
    G Ital Cardiol (Rome); 2020 Apr; 21(4 Suppl 2):12S-21S. PubMed ID: 32250365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization.
    Gudigar A; Nayak S; Samanth J; Raghavendra U; A J A; Barua PD; Hasan MN; Ciaccio EJ; Tan RS; Rajendra Acharya U
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Layered Fibrotic Plaques Are the Predominant Component in Cardiac Allograft Vasculopathy: Systematic Findings and Risk Stratification by OCT.
    Clemmensen TS; Holm NR; Eiskjær H; Løgstrup BB; Christiansen EH; Dijkstra J; Barkholt TØ; Terkelsen CJ; Maeng M; Poulsen SH
    JACC Cardiovasc Imaging; 2017 Jul; 10(7):773-784. PubMed ID: 28330670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.