BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35383790)

  • 1. Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates.
    Rajasekar S; Lin DSY; Zhang F; Sotra A; Boshart A; Clotet-Freixas S; Liu A; Hirota JA; Ogawa S; Konvalinka A; Zhang B
    Lab Chip; 2022 May; 22(10):1929-1942. PubMed ID: 35383790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study.
    Robu A; Mironov V; Neagu A
    Comput Math Methods Med; 2019; 2019():7853586. PubMed ID: 31236128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material.
    Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-bioprintable endothelial cell-laden sacrificial ink for fabrication of microvessel networks.
    Cheng KC; Theato P; Hsu SH
    Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37722376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biomimetic networks using viscous fingering in flexographic printing.
    Brumm P; Fritschen A; Doß L; Dörsam E; Blaeser A
    Biomed Mater; 2022 May; 17(4):. PubMed ID: 35579018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.
    Kang HW; Lee SJ; Ko IK; Kengla C; Yoo JJ; Atala A
    Nat Biotechnol; 2016 Mar; 34(3):312-9. PubMed ID: 26878319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale bioprinting of vascularized models.
    Miri AK; Khalilpour A; Cecen B; Maharjan S; Shin SR; Khademhosseini A
    Biomaterials; 2019 Apr; 198():204-216. PubMed ID: 30244825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering.
    Sousa CFV; Saraiva CA; Correia TR; Pesqueira T; Patrício SG; Rial-Hermida MI; Borges J; Mano JF
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive Three-Dimensional
    Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network.
    Pimentel C R; Ko SK; Caviglia C; Wolff A; Emnéus J; Keller SS; Dufva M
    Acta Biomater; 2018 Jan; 65():174-184. PubMed ID: 29102798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips.
    Homan KA; Kolesky DB; Skylar-Scott MA; Herrmann J; Obuobi H; Moisan A; Lewis JA
    Sci Rep; 2016 Oct; 6():34845. PubMed ID: 27725720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.