BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35383793)

  • 1. Finite-momentum excitons and the role of electron-phonon couplings in the electronic and phonon transport properties of boron arsenide.
    Mei H; Xia Y; Zhang Y; Wu Y; Chen Y; Ma C; Kong M; Peng L; Zhu H; Zhang H
    Phys Chem Chem Phys; 2022 Apr; 24(16):9384-9393. PubMed ID: 35383793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High thermal conductivity in cubic boron arsenide crystals.
    Li S; Zheng Q; Lv Y; Liu X; Wang X; Huang PY; Cahill DG; Lv B
    Science; 2018 Aug; 361(6402):579-581. PubMed ID: 29976796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High ambipolar mobility in cubic boron arsenide.
    Shin J; Gamage GA; Ding Z; Chen K; Tian F; Qian X; Zhou J; Lee H; Zhou J; Shi L; Nguyen T; Han F; Li M; Broido D; Schmidt A; Ren Z; Chen G
    Science; 2022 Jul; 377(6604):437-440. PubMed ID: 35862526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-Dependent Behavior of Defect-Modulated Band Structure in Boron Arsenide.
    Meng X; Singh A; Juneja R; Zhang Y; Tian F; Ren Z; Singh AK; Shi L; Lin JF; Wang Y
    Adv Mater; 2020 Nov; 32(45):e2001942. PubMed ID: 33015896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orchestrating the impact of antisites and vacancy defects on the elastic and optoelectronic properties of boron arsenide.
    Hussain A; Mian SA; Ahmed E; Jang J
    J Mol Model; 2023 Dec; 29(12):393. PubMed ID: 38041727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental observation of high thermal conductivity in boron arsenide.
    Kang JS; Li M; Wu H; Nguyen H; Hu Y
    Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the thermoelectric performance of graphene-like BX (X  =  P, As, Sb) monolayers.
    Zhou ZZ; Liu HJ; Fan DD; Cao GH
    J Phys Condens Matter; 2019 Sep; 31(38):385701. PubMed ID: 31174197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-electron scattering limits thermal conductivity of metals under extremely high electron temperatures.
    Karna P; Giri A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38740071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide.
    Ravichandran NK; Broido D
    Nat Commun; 2019 Feb; 10(1):827. PubMed ID: 30783095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of effects of interlayer interaction and biaxial strain on the phonon dispersion and dielectric response of hexagonal boron arsenide.
    Behzad S; Chegel R
    Sci Rep; 2023 Dec; 13(1):21339. PubMed ID: 38049458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2013 Jul; 111(2):025901. PubMed ID: 23889420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Electronic Thermal Conductivity of Graphene.
    Kim TY; Park CH; Marzari N
    Nano Lett; 2016 Apr; 16(4):2439-43. PubMed ID: 26907524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intervalley scattering induced significant reduction in lattice thermal conductivities for phosphorene.
    Wu Y; Chen Y; Peng L; Zhang H; Zhou L
    Nanoscale Horiz; 2023 Jun; 8(7):912-920. PubMed ID: 37183596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study.
    Raeisi M; Ahmadi S; Rajabpour A
    Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual high thermal conductivity in boron arsenide bulk crystals.
    Tian F; Song B; Chen X; Ravichandran NK; Lv Y; Chen K; Sullivan S; Kim J; Zhou Y; Liu TH; Goni M; Ding Z; Sun J; Udalamatta Gamage GAG; Sun H; Ziyaee H; Huyan S; Deng L; Zhou J; Schmidt AJ; Chen S; Chu CW; Huang PY; Broido D; Shi L; Chen G; Ren Z
    Science; 2018 Aug; 361(6402):582-585. PubMed ID: 29976797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenation and Fluorination of 2D Boron Phosphide and Boron Arsenide: A Density Functional Theory Investigation.
    Ullah S; Denis PA; Sato F
    ACS Omega; 2018 Dec; 3(12):16416-16423. PubMed ID: 31458278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.