These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35384207)

  • 1. Hybrid Pyridine-Pyridone Foldamer Channels as M2-Like Artificial Proton Channels.
    Shen J; Ye R; Liu Z; Zeng H
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202200259. PubMed ID: 35384207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur-Containing Foldamer-Based Artificial Lithium Channels.
    Shen J; R D; Li Z; Oh H; Behera H; Joshi H; Kumar M; Aksimentiev A; Zeng H
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202305623. PubMed ID: 37539755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine/Oxadiazole-Based Helical Foldamer Ion Channels with Exceptionally High K
    Chen F; Shen J; Li N; Roy A; Ye R; Ren C; Zeng H
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1440-1444. PubMed ID: 31584221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polypyridine-Based Helical Amide Foldamer Channels: Rapid Transport of Water and Protons with High Ion Rejection.
    Shen J; Fan J; Ye R; Li N; Mu Y; Zeng H
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13328-13334. PubMed ID: 32346957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons.
    Roy A; Shen J; Joshi H; Song W; Tu YM; Chowdhury R; Ye R; Li N; Ren C; Kumar M; Aksimentiev A; Zeng H
    Nat Nanotechnol; 2021 Aug; 16(8):911-917. PubMed ID: 34017100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unimolecular Helix-Based Transmembrane Nanochannel with a Smallest Luminal Cavity of 1 Å Expressing High Proton Selectivity and Transport Activity.
    Yan T; Liu S; Xu J; Sun H; Yu S; Liu J
    Nano Lett; 2021 Dec; 21(24):10462-10468. PubMed ID: 34860025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR.
    Mandala VS; Gelenter MD; Hong M
    J Am Chem Soc; 2018 Jan; 140(4):1514-1524. PubMed ID: 29303574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial primitive mimic of the Gramicidin-A channel.
    Barboiu M; Le Duc Y; Gilles A; Cazade PA; Michau M; Marie Legrand Y; van der Lee A; Coasne B; Parvizi P; Post J; Fyles T
    Nat Commun; 2014 Jun; 5():4142. PubMed ID: 24967600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton and cation transport activity of the M2 proton channel from influenza A virus.
    Leiding T; Wang J; Martinsson J; DeGrado WF; Arsköld SP
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15409-14. PubMed ID: 20713739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Definitive assignment of proton selectivity and attoampere unitary current to the M2 ion channel protein of influenza A virus.
    Lin TI; Schroeder C
    J Virol; 2001 Apr; 75(8):3647-56. PubMed ID: 11264354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
    Pomès R; Roux B
    Biophys J; 2002 May; 82(5):2304-16. PubMed ID: 11964221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport.
    Shen J; Roy A; Joshi H; Samineni L; Ye R; Tu YM; Song W; Skiles M; Kumar M; Aksimentiev A; Zeng H
    Nano Lett; 2022 Jun; 22(12):4831-4838. PubMed ID: 35674810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Sticky"-Ends-Guided Creation of Functional Hollow Nanopores for Guest Encapsulation and Water Transport.
    Huo Y; Zeng H
    Acc Chem Res; 2016 May; 49(5):922-30. PubMed ID: 27074642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases?
    Akeson M; Deamer DW
    Biophys J; 1991 Jul; 60(1):101-9. PubMed ID: 1715764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity Mechanism of the Voltage-gated Proton Channel, HV1.
    Dudev T; Musset B; Morgan D; Cherny VV; Smith SM; Mazmanian K; DeCoursey TE; Lim C
    Sci Rep; 2015 May; 5():10320. PubMed ID: 25955978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers.
    Quigley EP; Emerick AJ; Crumrine DS; Cukierman S
    Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcendent Aspects of Proton Channels.
    DeCoursey TE
    Annu Rev Physiol; 2024 Feb; 86():357-377. PubMed ID: 37931166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation.
    Licsandru E; Kocsis I; Shen YX; Murail S; Legrand YM; van der Lee A; Tsai D; Baaden M; Kumar M; Barboiu M
    J Am Chem Soc; 2016 Apr; 138(16):5403-9. PubMed ID: 27063409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.