BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35384394)

  • 1. A 1,2-Dioxetane-Based Chemiluminescent Probe for Highly Selective and Sensitive Detection of Superoxide Anions in Vitro and in Vivo.
    Gong Y; Yang M; Lv J; Li H; Gao J; Yuan Z
    Chempluschem; 2022 Apr; 87(4):e202200054. PubMed ID: 35384394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of imidazopyrazinone red-chemiluminescent probes for detecting superoxide anions via a chemiluminescence resonance energy transfer method.
    Teranishi K
    Luminescence; 2007; 22(2):147-56. PubMed ID: 17089347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescent Probes Based on 1,2-Dioxetane Structures For Bioimaging.
    Wang Y; Bian Y; Chen X; Su D
    Chem Asian J; 2022 Mar; 17(6):e202200018. PubMed ID: 35088544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation.
    Cui D; Li J; Zhao X; Pu K; Zhang R
    Adv Mater; 2020 Feb; 32(6):e1906314. PubMed ID: 31833600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivatable Red Chemiluminescent AIEgen Probe for
    Li J; Hu Y; Li Z; Liu W; Deng T; Li J
    Anal Chem; 2021 Aug; 93(30):10601-10610. PubMed ID: 34296856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Chemiluminescent Probe for Real-Time Monitoring Singlet Oxygen in Cells and Mice Model.
    Yang M; Zhang J; Shabat D; Fan J; Peng X
    ACS Sens; 2020 Oct; 5(10):3158-3164. PubMed ID: 32933258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Endoplasmic Reticulum-targeting Fluorescent Probe for the Imaging of Superoxide Anion in Living Cells.
    Wei H; Wang Y; Chen Q; Sun Y; Yue T; Dong B
    J Fluoresc; 2023 Mar; 33(2):509-515. PubMed ID: 36449229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells.
    Hananya N; Green O; Blau R; Satchi-Fainaro R; Shabat D
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11793-11796. PubMed ID: 28749072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems.
    Fu A; Mao Y; Wang H; Cao Z
    J Pharm Biomed Anal; 2021 Sep; 204():114266. PubMed ID: 34284266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy.
    Wei X; Huang J; Zhang C; Xu C; Pu K; Zhang Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202213791. PubMed ID: 36579889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red-shifted emission from 1,2-dioxetane-based chemiluminescent reactions.
    Park JY; Gunpat J; Liu L; Edwards B; Christie A; Xie XJ; Kricka LJ; Mason RP
    Luminescence; 2014 Sep; 29(6):553-8. PubMed ID: 24760607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and
    Haris U; Kagalwala HN; Kim YL; Lippert AR
    Acc Chem Res; 2021 Jul; 54(13):2844-2857. PubMed ID: 34110136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Structural Space of Chemiluminescent 1,2-Dioxetanes.
    Haris U; Lippert AR
    ACS Sens; 2023 Jan; 8(1):3-11. PubMed ID: 36574491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-Transformable Superoxide-Triggered Nanoreporters for Crosstalk-Free Dual Fluorescence/Chemiluminescence Imaging and Urinalysis in Living Mice.
    Ruan B; Yu M; Zhou Y; Xu W; Liu Y; Liu B; Zhu L; Yi S; Jiang Y; Huang J
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305812. PubMed ID: 37258940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly responsive, sensitive NIR fluorescent probe for imaging of superoxide anion in mitochondria of oral cancer cells.
    Jiao S; Zhai J; Yang S; Meng X
    Talanta; 2021 Jan; 222():121566. PubMed ID: 33167262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a super large Stokes shift near-infrared fluorescent probe for detection and imaging of superoxide anion in living cells, zebrafish and mice.
    Zhao X; Chen X; Wu Y; Wang J; Lin P; Zhou L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123806. PubMed ID: 38154307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratiometric pH Imaging Using a 1,2-Dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals.
    Ryan LS; Gerberich J; Haris U; Nguyen D; Mason RP; Lippert AR
    ACS Sens; 2020 Sep; 5(9):2925-2932. PubMed ID: 32829636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals.
    Ye S; Hananya N; Green O; Chen H; Zhao AQ; Shen J; Shabat D; Yang D
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14326-14330. PubMed ID: 32472602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation.
    Zielonka J; Lambeth JD; Kalyanaraman B
    Free Radic Biol Med; 2013 Dec; 65():1310-1314. PubMed ID: 24080119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive and accurate readout of superoxide anion in biological systems by near-infrared light.
    Teranishi K
    Anal Chim Acta; 2021 Sep; 1179():338827. PubMed ID: 34535266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.