BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35385249)

  • 1. Electrooculography and Tactile Perception Collaborative Interface for 3D Human-Machine Interaction.
    Xu J; Li X; Chang H; Zhao B; Tan X; Yang Y; Tian H; Zhang S; Ren TL
    ACS Nano; 2022 Apr; 16(4):6687-6699. PubMed ID: 35385249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Enabled Tactile Sensor Design for Dynamic Touch Decoding.
    Lu Y; Kong D; Yang G; Wang R; Pang G; Luo H; Yang H; Xu K
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303949. PubMed ID: 37740421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot.
    Pérez-Reynoso FD; Rodríguez-Guerrero L; Salgado-Ramírez JC; Ortega-Palacios R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-coupled tactile recognition with high spatiotemporal resolution based on cross-striped nanocarbon piezoresistive sensor array.
    Ouyang Q; Yao C; Chen H; Song L; Zhang T; Chen D; Yang L; Chen M; Chen HJ; Peng Z; Xie X
    Biosens Bioelectron; 2024 Feb; 246():115873. PubMed ID: 38071853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Fully Flexible Tactile Pressure Sensor with Bilayer Interlaced Bumps for Robotic Grasping Applications.
    Zhu L; Wang Y; Mei D; Jiang C
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32806604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructured graphene arrays for highly sensitive flexible tactile sensors.
    Zhu B; Niu Z; Wang H; Leow WR; Wang H; Li Y; Zheng L; Wei J; Huo F; Chen X
    Small; 2014 Sep; 10(18):3625-31. PubMed ID: 24895228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal human-machine interface based on a brain-computer interface and an electrooculography interface.
    Iáñez E; Ùbeda A; Azorín JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4572-5. PubMed ID: 22255355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin-Inspired Highly Sensitive Tactile Sensors with Ultrahigh Resolution over a Broad Sensing Range.
    Zhao XH; Lai QT; Guo WT; Liang ZH; Tang Z; Tang XG; Roy VAL; Sun QJ
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30486-30494. PubMed ID: 37315104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection.
    Wu D; Cheng X; Chen Z; Xu Z; Zhu M; Zhao Y; Zhu R; Lin L
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35617936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Experimental Research of Robot Finger Sliding Tactile Sensor Based on FBG.
    Lu G; Fu S; Xu Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network.
    Ji J; Zhao W; Wang Y; Li Q; Wang G
    ACS Nano; 2023 Oct; 17(20):20153-20166. PubMed ID: 37801407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible, Permeable, and Recyclable Liquid-Metal-Based Transient Circuit Enables Contact/Noncontact Sensing for Wearable Human-Machine Interaction.
    Zheng K; Gu F; Wei H; Zhang L; Chen X; Jin H; Pan S; Chen Y; Wang S
    Small Methods; 2023 Apr; 7(4):e2201534. PubMed ID: 36813751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimodal Intelligent Electronic Skin Based on Proximity and Tactile Interaction for Pressure and Configuration Perception.
    Wu Q; Zhou C; Xu Y; Han S; Chen A; Zhang J; Chen Y; Yang X; Huang J; Guan L
    ACS Sens; 2024 Apr; 9(4):2091-2100. PubMed ID: 38502945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional Tactile Sensor with a Thin Compound Eye-Inspired Imaging System.
    Zhang Y; Chen X; Wang MY; Yu H
    Soft Robot; 2022 Oct; 9(5):861-870. PubMed ID: 34619070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.