These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35385287)

  • 1. Minimizing and Controlling Hydrogen for Highly Efficient Formamidinium Lead Triiodide Solar Cells.
    Liang Y; Cui X; Li F; Stampfl C; Ringer SP; Huang J; Zheng R
    J Am Chem Soc; 2022 Apr; 144(15):6770-6778. PubMed ID: 35385287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Perovskitoid Engineering at SnO
    Ai Y; Zhang Y; Song J; Kong T; Li Y; Xie H; Bi D
    J Phys Chem Lett; 2021 Nov; 12(43):10567-10573. PubMed ID: 34704448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Formation Mechanism of (001) Facet Dominated α-FAPbI
    Li S; Xia J; Wen Z; Gu H; Guo J; Liang C; Pan H; Wang X; Chen S
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300056. PubMed ID: 37088801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites.
    Zhang X; Shen JX; Turiansky ME; Van de Walle CG
    Nat Mater; 2021 Jul; 20(7):971-976. PubMed ID: 33927392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells.
    Chen T; Xie J; Wen B; Yin Q; Lin R; Zhu S; Gao P
    Nat Commun; 2023 Sep; 14(1):6125. PubMed ID: 37777546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers.
    Liu N; Yam C
    Phys Chem Chem Phys; 2018 Mar; 20(10):6800-6804. PubMed ID: 29473061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead Vacancy Can Explain the Suppressed Nonradiative Electron-Hole Recombination in FAPbI
    He J; Long R
    J Phys Chem Lett; 2018 Nov; 9(22):6489-6495. PubMed ID: 30380884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Bonding Regulation of Surface Ligands for Efficient and Stable FAPbI
    Ding S; Hao M; Fu C; Lin T; Baktash A; Chen P; He D; Zhang C; Chen W; Whittaker AK; Bai Y; Wang L
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204476. PubMed ID: 36316248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring stability of formamidinium lead trihalide for solar cell application.
    Wang M
    Sci Bull (Beijing); 2017 Feb; 62(4):249-255. PubMed ID: 36659353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cetrimonium bromide and potassium thiocyanate assisted post-vapor treatment approach to enhance power conversion efficiency and stability of FAPbI
    Kumar A; Singh S; Sharma DK; Al-Bahrani M; Alhakeem MRH; Sharma A; Anil Kumar TC
    RSC Adv; 2023 Jan; 13(2):1402-1411. PubMed ID: 36686937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal-Bandgap Perovskite Solar Cells.
    Zong Y; Wang N; Zhang L; Ju MG; Zeng XC; Sun XW; Zhou Y; Padture NP
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12658-12662. PubMed ID: 28671739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstrain and Urbach Energy Relaxation in FAPbI
    Haris MPU; Kazim S; Ahmad S
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24546-24556. PubMed ID: 35583343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized incorporation of cesium ions to improve formamidinium lead iodide layers in perovskite solar cells.
    Xue Y; Tian J; Wang H; Xie H; Zhu S; Zheng B; Gao C; Liu X
    RSC Adv; 2018 Jul; 8(45):25645-25652. PubMed ID: 35539817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous low-temperature crystallization of α-FAPbI
    Zhang T; Xu Q; Xu F; Fu Y; Wang Y; Yan Y; Zhang L; Zhao Y
    Sci Bull (Beijing); 2019 Nov; 64(21):1608-1616. PubMed ID: 36659573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide.
    Min H; Kim M; Lee SU; Kim H; Kim G; Choi K; Lee JH; Seok SI
    Science; 2019 Nov; 366(6466):749-753. PubMed ID: 31699938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications.
    Fang HH; Wang F; Adjokatse S; Zhao N; Even J; Antonietta Loi M
    Light Sci Appl; 2016 Apr; 5(4):e16056. PubMed ID: 30167155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Degradation of Methylenediammonium and Its Role in Phase-Stabilizing Formamidinium Lead Triiodide.
    Duijnstee EA; Gallant BM; Holzhey P; Kubicki DJ; Collavini S; Sturdza BK; Sansom HC; Smith J; Gutmann MJ; Saha S; Gedda M; Nugraha MI; Kober-Czerny M; Xia C; Wright AD; Lin YH; Ramadan AJ; Matzen A; Hung EY; Seo S; Zhou S; Lim J; Anthopoulos TD; Filip MR; Johnston MB; Nicholas RJ; Delgado JL; Snaith HJ
    J Am Chem Soc; 2023 May; 145(18):10275-10284. PubMed ID: 37115733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic Phase Stability and Inherent Bandgap of Formamidinium Lead Triiodide Perovskite Single Crystals.
    Chen L; Yoo JW; Hu M; Lee SU; Seok SI
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202212700. PubMed ID: 36237177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced optical absorption via cation doping hybrid lead iodine perovskites.
    Tang ZK; Xu ZF; Zhang DY; Hu SX; Lau WM; Liu LM
    Sci Rep; 2017 Aug; 7(1):7843. PubMed ID: 28798418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI
    Oner SM; Sezen E; Yordanli MS; Karakoc E; Deger C; Yavuz I
    J Phys Chem Lett; 2022 Jan; 13(1):324-330. PubMed ID: 34978837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.