These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35385295)

  • 1. Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control.
    Ito H; Yamamoto K; Mori H; Ogata T
    Sci Robot; 2022 Apr; 7(65):eaax8177. PubMed ID: 35385295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Human Support Robot for the Cleaning and Maintenance of Door Handles Using a Deep-Learning Framework.
    Ramalingam B; Yin J; Rajesh Elara M; Tamilselvam YK; Mohan Rayguru M; Muthugala MAVJ; Félix Gómez B
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32585864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Social learning in swarm robotics.
    Bredeche N; Fontbonne N
    Philos Trans R Soc Lond B Biol Sci; 2022 Jan; 377(1843):20200309. PubMed ID: 34894730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hebbian learning for online prediction, neural recall and classical conditioning of anthropomimetic robot arm motions.
    Feldotto B; Walter F; Röhrbein F; Knoll A
    Bioinspir Biomim; 2018 Oct; 13(6):066009. PubMed ID: 30221625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time People Re-Identification and Tracking for Autonomous Platforms Using a Trajectory Prediction-Based Approach.
    Ghiță AȘ; Florea AM
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path Integral Policy Improvement With Population Adaptation.
    Yamamoto K; Ariizumi R; Hayakawa T; Matsuno F
    IEEE Trans Cybern; 2022 Jan; 52(1):312-322. PubMed ID: 32324589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
    Shimizu T; Saegusa R; Ikemoto S; Ishiguro H; Metta G
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):1035-47. PubMed ID: 25029488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Mobile Manipulation through Deep Reinforcement Learning.
    Wang C; Zhang Q; Tian Q; Li S; Wang X; Lane D; Petillot Y; Wang S
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Haptic Perception in Robots: A Review.
    Seminara L; Gastaldo P; Watt SJ; Valyear KF; Zuher F; Mastrogiovanni F
    Front Neurorobot; 2019; 13():53. PubMed ID: 31379549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.