These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35385355)

  • 41. Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making.
    Li YS; Nassar MR; Kable JW; Gold JI
    J Neurosci; 2019 Aug; 39(34):6668-6683. PubMed ID: 31217329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.
    Klaes C; Schneegans S; Schöner G; Gail A
    PLoS Comput Biol; 2012; 8(11):e1002774. PubMed ID: 23166483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validation of decision-making models and analysis of decision variables in the rat basal ganglia.
    Ito M; Doya K
    J Neurosci; 2009 Aug; 29(31):9861-74. PubMed ID: 19657038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pupil Correlates of Decision Variables in Mice Playing a Competitive Mixed-Strategy Game.
    Wang H; Ortega HK; Atilgan H; Murphy CE; Kwan AC
    eNeuro; 2022; 9(2):. PubMed ID: 35168951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Choice perseveration in value-based decision making: The impact of inter-trial interval and mood.
    Senftleben U; Schoemann M; Schwenke D; Richter S; Dshemuchadse M; Scherbaum S
    Acta Psychol (Amst); 2019 Jul; 198():102876. PubMed ID: 31280037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stochastic satisficing account of confidence in uncertain value-based decisions.
    Hertz U; Bahrami B; Keramati M
    PLoS One; 2018; 13(4):e0195399. PubMed ID: 29621325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying value-based determinants of drug and non-drug decision dynamics.
    Smith AP; Beckmann JS
    Psychopharmacology (Berl); 2021 Aug; 238(8):2047-2057. PubMed ID: 33839902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessing the role of reward in task selection using a reward-based voluntary task switching paradigm.
    Braun DA; Arrington CM
    Psychol Res; 2018 Jan; 82(1):54-64. PubMed ID: 28951967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prefrontal Cortex Representation of Learning of Punishment Probability During Reward-Motivated Actions.
    Jacobs DS; Moghaddam B
    J Neurosci; 2020 Jun; 40(26):5063-5077. PubMed ID: 32409619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How pupil responses track value-based decision-making during and after reinforcement learning.
    Van Slooten JC; Jahfari S; Knapen T; Theeuwes J
    PLoS Comput Biol; 2018 Nov; 14(11):e1006632. PubMed ID: 30500813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments.
    Chakraborty S; Kolling N; Walton ME; Mitchell AS
    Elife; 2016 May; 5():. PubMed ID: 27136677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uncovering the 'state': Tracing the hidden state representations that structure learning and decision-making.
    Langdon AJ; Song M; Niv Y
    Behav Processes; 2019 Oct; 167():103891. PubMed ID: 31381985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cortical substrates for exploratory decisions in humans.
    Daw ND; O'Doherty JP; Dayan P; Seymour B; Dolan RJ
    Nature; 2006 Jun; 441(7095):876-9. PubMed ID: 16778890
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Medial Orbitofrontal Cortex-Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice.
    Lichtenberg NT; Sepe-Forrest L; Pennington ZT; Lamparelli AC; Greenfield VY; Wassum KM
    J Neurosci; 2021 Aug; 41(34):7267-7277. PubMed ID: 34272313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mice can count and optimize count-based decisions.
    Çavdaroğlu B; Balcı F
    Psychon Bull Rev; 2016 Jun; 23(3):871-6. PubMed ID: 26463617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Win-Concurrent Sensory Cues Can Promote Riskier Choice.
    Cherkasova MV; Clark L; Barton JJS; Schulzer M; Shafiee M; Kingstone A; Stoessl AJ; Winstanley CA
    J Neurosci; 2018 Nov; 38(48):10362-10370. PubMed ID: 30373765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-action Learning: Saving Action-Associated Cost Serves as a Covert Reward.
    Tanimoto S; Kondo M; Morita K; Yoshida E; Matsuzaki M
    Front Behav Neurosci; 2020; 14():141. PubMed ID: 33100979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection.
    Ueda Y; Yamanaka K; Noritake A; Enomoto K; Matsumoto N; Yamada H; Samejima K; Inokawa H; Hori Y; Nakamura K; Kimura M
    Front Neuroanat; 2017; 11():66. PubMed ID: 28824386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.