BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 35385477)

  • 1. Neuromorphic computing for content-based image retrieval.
    Liu TY; Mahjoubfar A; Prusinski D; Stevens L
    PLoS One; 2022; 17(4):e0264364. PubMed ID: 35385477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiking Neural Networks for Structural Health Monitoring.
    Joseph GV; Pakrashi V
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional networks for fast, energy-efficient neuromorphic computing.
    Esser SK; Merolla PA; Arthur JV; Cassidy AS; Appuswamy R; Andreopoulos A; Berg DJ; McKinstry JL; Melano T; Barch DR; di Nolfo C; Datta P; Amir A; Taba B; Flickner MD; Modha DS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11441-11446. PubMed ID: 27651489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip.
    Yao M; Richter O; Zhao G; Qiao N; Xing Y; Wang D; Hu T; Fang W; Demirci T; De Marchi M; Deng L; Yan T; Nielsen C; Sheik S; Wu C; Tian Y; Xu B; Li G
    Nat Commun; 2024 May; 15(1):4464. PubMed ID: 38796464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi.
    Michaelis C; Lehr AB; Tetzlaff C
    Front Neurorobot; 2020; 14():589532. PubMed ID: 33324191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing.
    Ceolini E; Frenkel C; Shrestha SB; Taverni G; Khacef L; Payvand M; Donati E
    Front Neurosci; 2020; 14():637. PubMed ID: 32903824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Management in Neuromorphic Materials, Devices, and Networks.
    Torres F; Basaran AC; Schuller IK
    Adv Mater; 2023 Sep; 35(37):e2205098. PubMed ID: 36067752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven artificial and spiking neural networks for inverse kinematics in neurorobotics.
    Volinski A; Zaidel Y; Shalumov A; DeWolf T; Supic L; Ezra Tsur E
    Patterns (N Y); 2022 Jan; 3(1):100391. PubMed ID: 35079712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADOL: Neuromorphic Architecture for Spike-Driven Online Learning by Dendrites.
    Yang S; Wang H; Pang Y; Azghadi MR; Linares-Barranco B
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):186-199. PubMed ID: 37725735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neurosci; 2022; 16():883360. PubMed ID: 35712458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.