These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 35385733)
81. Targeting interleukin 4 receptor alpha on tumor-associated macrophages reduces the pro-tumor macrophage phenotype. de Groot AE; Myers KV; Krueger TEG; Brennen WN; Amend SR; Pienta KJ Neoplasia; 2022 Oct; 32():100830. PubMed ID: 35939881 [TBL] [Abstract][Full Text] [Related]
82. Macrophage barrier in the tumor microenvironment and potential clinical applications. Ji S; Shi Y; Yin B Cell Commun Signal; 2024 Jan; 22(1):74. PubMed ID: 38279145 [TBL] [Abstract][Full Text] [Related]
83. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Fiani ML; Barreca V; Sargiacomo M; Ferrantelli F; Manfredi F; Federico M Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878276 [TBL] [Abstract][Full Text] [Related]
84. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307 [TBL] [Abstract][Full Text] [Related]
85. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Finkernagel F; Reinartz S; Lieber S; Adhikary T; Wortmann A; Hoffmann N; Bieringer T; Nist A; Stiewe T; Jansen JM; Wagner U; Müller-Brüsselbach S; Müller R Oncotarget; 2016 Nov; 7(46):75339-75352. PubMed ID: 27659538 [TBL] [Abstract][Full Text] [Related]
86. Targeting tumor-associated macrophages for cancer immunotherapy. Cao X; Lai SWT; Chen S; Wang S; Feng M Int Rev Cell Mol Biol; 2022; 368():61-108. PubMed ID: 35636930 [TBL] [Abstract][Full Text] [Related]
87. Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy. Qiao X; Hu Z; Xiong F; Yang Y; Peng C; Wang D; Li X Lipids Health Dis; 2023 Mar; 22(1):45. PubMed ID: 37004014 [TBL] [Abstract][Full Text] [Related]
88. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Liu Q; Yan X; Li R; Yuan Y; Wang J; Zhao Y; Fu J; Su J Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256070 [TBL] [Abstract][Full Text] [Related]
89. Targeting tumor-associated macrophages: A potential treatment for solid tumors. Chen Y; Jin H; Song Y; Huang T; Cao J; Tang Q; Zou Z J Cell Physiol; 2021 May; 236(5):3445-3465. PubMed ID: 33200401 [TBL] [Abstract][Full Text] [Related]
90. Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages. Liu S; Shen YY; Yin LY; Liu J; Zu X DNA Cell Biol; 2023 Aug; 42(8):445-455. PubMed ID: 37535386 [TBL] [Abstract][Full Text] [Related]
91. Reciprocal interactions between malignant cells and macrophages enhance cancer stemness and M2 polarization in HBV-associated hepatocellular carcinoma. Zhang Q; Tsui YM; Zhang VX; Lu AJ; Lee JM; Lee E; Cheung GC; Li PM; Cheung ET; Chia NH; Lo IL; Chan AC; Cheung TT; Ng IO; Ho DW Theranostics; 2024; 14(2):892-910. PubMed ID: 38169544 [No Abstract] [Full Text] [Related]
92. Pulmonary administration of a CSF-1R inhibitor alters the balance of tumor-associated macrophages and supports first-line chemotherapy in a lung cancer model. Zhang H; Almuqbil RM; Alhudaithi SS; Sunbul FS; da Rocha SRP Int J Pharm; 2021 Apr; 598():120350. PubMed ID: 33545279 [TBL] [Abstract][Full Text] [Related]
93. Metabolism, metabolites, and macrophages in cancer. Li M; Yang Y; Xiong L; Jiang P; Wang J; Li C J Hematol Oncol; 2023 Jul; 16(1):80. PubMed ID: 37491279 [TBL] [Abstract][Full Text] [Related]
94. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Yu M; Yu H; Wang H; Xu X; Sun Z; Chen W; Yu M; Liu C; Jiang M; Zhang X Int J Oncol; 2024 Oct; 65(4):. PubMed ID: 39239752 [TBL] [Abstract][Full Text] [Related]
95. Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy. Zhao C; Pan Y; Liu L; Zhang J; Wu X; Liu Y; Zhao XZ; Rao L Small; 2024 Aug; 20(31):e2311702. PubMed ID: 38456371 [TBL] [Abstract][Full Text] [Related]
96. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Zhang Q; Wang J; Yadav DK; Bai X; Liang T Front Immunol; 2021; 12():702580. PubMed ID: 34267763 [TBL] [Abstract][Full Text] [Related]
97. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Kes MMG; Van den Bossche J; Griffioen AW; Huijbers EJM Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188427. PubMed ID: 32961257 [TBL] [Abstract][Full Text] [Related]
98. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Zhang H; Liu L; Liu J; Dang P; Hu S; Yuan W; Sun Z; Liu Y; Wang C Mol Cancer; 2023 Mar; 22(1):58. PubMed ID: 36941614 [TBL] [Abstract][Full Text] [Related]
99. Mannosylated-serum albumin nanoparticle imaging to monitor tumor-associated macrophages under anti-PD1 treatment. Gu GJ; Chung H; Park JY; Yoo R; Im HJ; Choi H; Lee YS; Seok SH J Nanobiotechnology; 2023 Jan; 21(1):31. PubMed ID: 36707872 [TBL] [Abstract][Full Text] [Related]
100. PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC. Chen X; Zhou J; Wang Y; Wang X; Chen K; Chen Q; Huang D; Jiang R Oncogene; 2024 Aug; 43(33):2517-2530. PubMed ID: 39004633 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]