These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35386234)
21. Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Hryhorowicz M; Grześkowiak B; Mazurkiewicz N; Śledziński P; Lipiński D; Słomski R Mol Biotechnol; 2019 Mar; 61(3):173-180. PubMed ID: 30560399 [TBL] [Abstract][Full Text] [Related]
22. CRISPR/Cas9 Mutagenesis by Translocation of Cas9 Protein Into Plant Cells via the Schmitz DJ; Ali Z; Wang C; Aljedaani F; Hooykaas PJJ; Mahfouz M; de Pater S Front Genome Ed; 2020; 2():6. PubMed ID: 34713215 [TBL] [Abstract][Full Text] [Related]
23. A piggyBac-based toolkit for inducible genome editing in mammalian cells. Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683 [TBL] [Abstract][Full Text] [Related]
24. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Han X; Liu Z; Jo MC; Zhang K; Li Y; Zeng Z; Li N; Zu Y; Qin L Sci Adv; 2015 Aug; 1(7):e1500454. PubMed ID: 26601238 [TBL] [Abstract][Full Text] [Related]
25. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure. Okee M; Bayiyana A; Musubika C; Joloba ML; Ashaba-Katabazi F; Bagaya B; Wayengera M AIDS Res Hum Retroviruses; 2018 Jan; 34(1):88-102. PubMed ID: 29183134 [TBL] [Abstract][Full Text] [Related]
26. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. Cai M; Si Y; Zhang J; Tian Z; Du S Mar Biotechnol (NY); 2018 Apr; 20(2):168-181. PubMed ID: 29374849 [TBL] [Abstract][Full Text] [Related]
27. Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Johnston RK; Seamon KJ; Saada EA; Podlevsky JD; Branda SS; Timlin JA; Harper JC Biosens Bioelectron; 2019 Sep; 141():111361. PubMed ID: 31207570 [TBL] [Abstract][Full Text] [Related]
28. Different Methods of Delivering CRISPR/Cas9 Into Cells. Chandrasekaran AP; Song M; Kim KS; Ramakrishna S Prog Mol Biol Transl Sci; 2018; 159():157-176. PubMed ID: 30340786 [TBL] [Abstract][Full Text] [Related]
29. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC-Cas9 or cleavage by Cas9 in living cells. St Martin A; Salamango D; Serebrenik A; Shaban N; Brown WL; Donati F; Munagala U; Conticello SG; Harris RS Nucleic Acids Res; 2018 Aug; 46(14):e84. PubMed ID: 29746667 [TBL] [Abstract][Full Text] [Related]
30. Polyethylenimine-Functionalized Carbon Dots for Delivery of CRISPR/Cas9 Complexes. Hashemzadeh I; Hasanzadeh A; Radmanesh F; Khodadadi Chegeni B; Hosseini ES; Kiani J; Shahbazi A; Naseri M; Fatahi Y; Nourizadeh H; Kheiri Yeghaneh Azar B; Aref AR; Liu Y; Hamblin MR; Karimi M ACS Appl Bio Mater; 2021 Nov; 4(11):7979-7992. PubMed ID: 35006779 [TBL] [Abstract][Full Text] [Related]
31. Genome Editing in Cotton with the CRISPR/Cas9 System. Gao W; Long L; Tian X; Xu F; Liu J; Singh PK; Botella JR; Song C Front Plant Sci; 2017; 8():1364. PubMed ID: 28824692 [TBL] [Abstract][Full Text] [Related]
32. Establishment of a type II insulin-like growth factor receptor gene site-integrated SKBR3 cell line using CRISPR/Cas9. Ma X; Cao R; Xiao H; Cao Z Oncol Lett; 2020 Dec; 20(6):354. PubMed ID: 33123265 [TBL] [Abstract][Full Text] [Related]
33. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination. Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913 [TBL] [Abstract][Full Text] [Related]
34. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Liu C; Zhang L; Liu H; Cheng K J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805 [TBL] [Abstract][Full Text] [Related]
35. Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube. Nagahara S; Higashiyama T; Mizuta Y Plant Reprod; 2021 Sep; 34(3):191-205. PubMed ID: 34146158 [TBL] [Abstract][Full Text] [Related]
36. CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. Farooq R; Hussain K; Tariq M; Farooq A; Mustafa M J Appl Genet; 2020 Feb; 61(1):51-65. PubMed ID: 31912450 [TBL] [Abstract][Full Text] [Related]
37. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm. Bahariah B; Masani MYA; Rasid OA; Parveez GKA J Genet Eng Biotechnol; 2021 Jun; 19(1):86. PubMed ID: 34115267 [TBL] [Abstract][Full Text] [Related]
38. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
39. Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier. Wang P; Zhang L; Xie Y; Wang N; Tang R; Zheng W; Jiang X Adv Sci (Weinh); 2017 Nov; 4(11):1700175. PubMed ID: 29201613 [TBL] [Abstract][Full Text] [Related]
40. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast. Zhang XR; He JB; Wang YZ; Du LL G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]