BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35386324)

  • 21. Amphiphilic Polyelectrolyte Graft Copolymers Enhance the Activity of Cyclic Dinucleotide STING Agonists.
    Nguyen DC; Shae D; Pagendarm HM; Becker KW; Wehbe M; Kilchrist KV; Pastora LE; Palmer CR; Seber P; Christov PP; Duvall CL; Wilson JT
    Adv Healthc Mater; 2021 Jan; 10(2):e2001056. PubMed ID: 33225632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of a STING Agonist and Photothermal Therapy Using Chitosan Hydrogels for Cancer Immunotherapy.
    Chen C; Hu M; Cao Y; Zhu B; Chen J; Li Y; Shao J; Zhou S; Shan P; Zheng C; Li Z; Li Z
    Biomacromolecules; 2023 Jun; 24(6):2790-2803. PubMed ID: 37125731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy.
    Doshi AS; Cantin S; Prickett LB; Mele DA; Amiji M
    J Control Release; 2022 May; 345():721-733. PubMed ID: 35378213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2',4'-LNA-Functionalized 5'-S-phosphorothioester CDNs as STING agonist.
    Yeboah SK; Zigli A; Sintim HO
    Chembiochem; 2024 May; ():e202400321. PubMed ID: 38720428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy.
    Motedayen Aval L; Pease JE; Sharma R; Pinato DJ
    J Clin Med; 2020 Oct; 9(10):. PubMed ID: 33081170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-Responsive STING-Activating DNA Nanovaccines for Cancer Immunotherapy.
    Zhang Y; Shen T; Zhou S; Wang W; Lin S; Zhu G
    Adv Ther (Weinh); 2020 Sep; 3(9):. PubMed ID: 34337143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytosolic Delivery of Thiolated Mn-cGAMP Nanovaccine to Enhance the Antitumor Immune Responses.
    Chen C; Tong Y; Zheng Y; Shi Y; Chen Z; Li J; Liu X; Zhang D; Yang H
    Small; 2021 Apr; 17(17):e2006970. PubMed ID: 33719177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of tumor regression by intratumoral STING agonists combined with anti-programmed death-L1 blocking antibody in a preclinical squamous cell carcinoma model.
    Gadkaree SK; Fu J; Sen R; Korrer MJ; Allen C; Kim YJ
    Head Neck; 2017 Jun; 39(6):1086-1094. PubMed ID: 28323387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 2D Nanoradiosensitizer Enhances Radiotherapy and Delivers STING Agonists to Potentiate Cancer Immunotherapy.
    Luo T; Nash GT; Jiang X; Feng X; Mao J; Liu J; Juloori A; Pearson AT; Lin W
    Adv Mater; 2022 Sep; 34(39):e2110588. PubMed ID: 35952624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfonated Perylene as Three-in-One STING Agonist for Cancer Chemo-Immunotherapy.
    Zhao X; Zheng R; Zhang B; Zhao Y; Xue W; Fang Y; Huang Y; Yin M
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318799. PubMed ID: 38230819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants.
    Dubensky TW; Kanne DB; Leong ML
    Ther Adv Vaccines; 2013 Nov; 1(4):131-43. PubMed ID: 24757520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation.
    Zhang BD; Wu JJ; Li WH; Hu HG; Zhao L; He PY; Zhao YF; Li YM
    Nano Res; 2022; 15(7):6328-6339. PubMed ID: 35464625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of BI 7446: A Potent Cyclic Dinucleotide STING Agonist with Broad-Spectrum Variant Activity for the Treatment of Cancer.
    Kuttruff CA; Fleck M; Carotta S; Arnhof H; Bretschneider T; Dahmann G; Gremel G; Grube A; Handschuh S; Heimann A; Hofmann MH; Impagnatiello MA; Nar H; Rast G; Schaaf O; Schmidt E; Oost T
    J Med Chem; 2023 Jul; 66(14):9376-9400. PubMed ID: 37450324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving STING Agonist Delivery for Cancer Immunotherapy Using Biodegradable Mesoporous Silica Nanoparticles.
    Park KS; Xu C; Sun X; Louttit C; Moon JJ
    Adv Ther (Weinh); 2020 Oct; 3(10):. PubMed ID: 34295963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipo/TK-CDN/TPP/Y6 nanoparticles inhibit cutaneous melanoma formation.
    Xiao A; Yin L; Chen T; Qian H
    J Drug Target; 2024 Jun; ():1-10. PubMed ID: 38838039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming STING Agonists Barriers: Peptide, Protein, and Biomembrane-based Biocompatible Delivery Strategies.
    Zheng YF; Wu JJ
    Chem Asian J; 2022 Mar; 17(6):e202101400. PubMed ID: 35080118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chimeric Exosomes Functionalized with STING Activation for Personalized Glioblastoma Immunotherapy.
    Bao P; Gu HY; Ye JJ; He JL; Zhong Z; Yu AX; Zhang XZ
    Adv Sci (Weinh); 2024 Feb; 11(6):e2306336. PubMed ID: 38072677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. STING Activation and its Application in Immuno-Oncology.
    Lian Y; Duffy KJ; Yang J
    Curr Top Med Chem; 2019; 19(24):2205-2227. PubMed ID: 31642767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy.
    Wu JJ; Zhao L; Hu HG; Li WH; Li YM
    Med Res Rev; 2020 May; 40(3):1117-1141. PubMed ID: 31793026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy.
    Ager CR; Zhang H; Wei Z; Jones P; Curran MA; Di Francesco ME
    Bioorg Med Chem Lett; 2019 Oct; 29(20):126640. PubMed ID: 31500996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.