BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35386355)

  • 1. Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity.
    Ye J; Li B; Zheng Y; Wu S; Chen D; Han Y
    Bioact Mater; 2022 Sep; 15():173-184. PubMed ID: 35386355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing.
    Ye J; Li B; Li M; Zheng Y; Wu S; Han Y
    Bioact Mater; 2022 May; 11():181-191. PubMed ID: 34938922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods.
    Li J; Tan L; Liu X; Cui Z; Yang X; Yeung KWK; Chu PK; Wu S
    ACS Nano; 2017 Nov; 11(11):11250-11263. PubMed ID: 29049874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias.
    Ye J; Li B; Li M; Zheng Y; Wu S; Han Y
    Acta Biomater; 2020 Apr; 107():313-324. PubMed ID: 32126308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Finite Element Simulation on the Mechano-Bactericidal Mechanism of Hierarchical Nanostructure Arrays.
    Zhao L; Liu T; Li X; Cui Q; Wang X; Song K; Ge D; Li W
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4770-4780. PubMed ID: 37503882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the structural integrity of nanorod arrays.
    Thöle F; Xue L; HEß C; Hillebrand R; Gorb SN; Steinhart M
    J Microsc; 2017 Feb; 265(2):222-231. PubMed ID: 28094864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunomodulation and osseointegration activities of Na
    Yu D; Guo S; Yu M; Liu W; Li X; Chen D; Li B; Guo Z; Han Y
    Bioact Mater; 2022 Apr; 10():323-334. PubMed ID: 34901549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do morphological sharpness measures relate to puncture performance in viperid snake fangs?
    Crofts SB; Lai Y; Hu Y; Anderson PSL
    Biol Lett; 2019 Apr; 15(4):20180905. PubMed ID: 30991915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application.
    Sadat-Shojai M; Atai M; Nodehi A; Khanlar LN
    Dent Mater; 2010 May; 26(5):471-82. PubMed ID: 20153516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific multi-stage CVD of large-scale arrays of ultrafine ZnO nanorods.
    Zhang XX; Zhao D; Gao M; Dong HB; Zhou WY; Xie SS
    Nanotechnology; 2011 Apr; 22(13):135603. PubMed ID: 21343640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taking a little off the top: nanorod array morphology and growth studied by focused ion beam tomography.
    Krause KM; Vick DW; Malac M; Brett MJ
    Langmuir; 2010 Nov; 26(22):17558-67. PubMed ID: 20879751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of polypyrrole nanorod arrays for supercapacitor: effect of length of nanorods on capacitance.
    Lee S; Cho MS; Nam JD; Lee Y
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5036-41. PubMed ID: 19198386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flat-Type Gas Sensors Based on ZnO Nanorod Arrays.
    Pan YW; Peng SJ; Ma YL; CaO PJ; Hu F
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7800-7807. PubMed ID: 32711661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability.
    Wang YN; Wei WT; Yang CW; Huang MH
    Langmuir; 2013 Aug; 29(33):10491-7. PubMed ID: 23924308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics.
    Chakraborty I; Ayyub P
    Nanotechnology; 2012 Jan; 23(1):015704. PubMed ID: 22155888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces.
    Ivanova EP; Linklater DP; Werner M; Baulin VA; Xu X; Vrancken N; Rubanov S; Hanssen E; Wandiyanto J; Truong VK; Elbourne A; Maclaughlin S; Juodkazis S; Crawford RJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12598-12605. PubMed ID: 32457154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region.
    Borie E; Orsi IA; Noritomi PY; Kemmoku DT
    Int J Oral Maxillofac Implants; 2016; 31(1):101-10. PubMed ID: 26478969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO
    Guan M; Chen Y; Wei Y; Song H; Gao C; Cheng H; Li Y; Huo K; Fu J; Xiong W
    Int J Nanomedicine; 2019; 14():2903-2914. PubMed ID: 31114199
    [No Abstract]   [Full Text] [Related]  

  • 19. Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation.
    Cui Q; Liu T; Li X; Zhao L; Wu Q; Wang X; Song K; Ge D
    Colloids Surf B Biointerfaces; 2021 Oct; 206():111929. PubMed ID: 34147928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Hydrothermal Synthesis of Novel 3D Hybrid Nanostructures on Titanium Surface with Mechano-bactericidal Performance.
    Zhao L; Liu T; Li X; Cui Q; Wu Q; Wang X; Song K; Ge D
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2268-2278. PubMed ID: 34014655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.