BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 35386443)

  • 1. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing.
    Wang Y; Yuan X; Yao B; Zhu S; Zhu P; Huang S
    Bioact Mater; 2022 Nov; 17():178-194. PubMed ID: 35386443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 3. 3D Coaxial Bioprinting: Process Mechanisms, Bioinks and Applications.
    Mohan TS; Datta P; Nesaei S; Ozbolat V; Ozbolat IT
    Prog Biomed Eng (Bristol); 2022 Apr; 4(2):. PubMed ID: 35573639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting.
    Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: An
    Masri S; Maarof M; Aziz IA; Idrus R; Fauzi MB
    Int J Bioprint; 2023; 9(3):677. PubMed ID: 37274005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Insight of Printability Quality Improvement Strategies in Natural-Based Bioinks for Skin Regeneration and Wound Healing.
    Masri S; Fauzi MB
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current advances and future perspectives in extrusion-based bioprinting.
    Ozbolat IT; Hospodiuk M
    Biomaterials; 2016 Jan; 76():321-43. PubMed ID: 26561931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting.
    Xu J; Zheng S; Hu X; Li L; Li W; Parungao R; Wang Y; Nie Y; Liu T; Song K
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32485901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review.
    Smandri A; Nordin A; Hwei NM; Chin KY; Abd Aziz I; Fauzi MB
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink.
    Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X
    Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting.
    Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS
    Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Alginate-Gelatin-Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds.
    Abdulmaged AI; Soon CF; Talip BA; Zamhuri SAA; Mostafa SA; Zhou W
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting.
    Nadernezhad A; Caliskan OS; Topuz F; Afghah F; Erman B; Koc B
    ACS Appl Bio Mater; 2019 Feb; 2(2):796-806. PubMed ID: 35016284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues.
    Kim D; Kim M; Lee J; Jang J
    Front Bioeng Biotechnol; 2022; 10():764682. PubMed ID: 35237569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.