These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35386455)

  • 1. Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation.
    Wang H; Zhou X; Wang J; Zhang X; Zhu M; Wang H
    Bioact Mater; 2022 Nov; 17():261-275. PubMed ID: 35386455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering.
    Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B
    Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Macro-/Micro-Channels on Vascularization and Immune Response of Tissue Engineering Scaffolds.
    Wen N; Qian E; Kang Y
    Cells; 2021 Jun; 10(6):. PubMed ID: 34208449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.
    Mohanty S; Larsen LB; Trifol J; Szabo P; Burri HV; Canali C; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():569-78. PubMed ID: 26117791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels.
    Davoodi E; Montazerian H; Zhianmanesh M; Abbasgholizadeh R; Haghniaz R; Baidya A; Pourmohammadali H; Annabi N; Weiss PS; Toyserkani E; Khademhosseini A
    Adv Healthc Mater; 2022 Apr; 11(7):e2102123. PubMed ID: 34967148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the 3D Printability of Sugar Glass to Engineer Sacrificial Vascular Templates.
    Moeun BN; Fernandez SA; Collin S; Gauvin-Rossignol G; Lescot T; Fortin MA; Ruel J; Bégin-Drolet A; Leask RL; Hoesli CA
    3D Print Addit Manuf; 2023 Oct; 10(5):869-886. PubMed ID: 37886415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks.
    Li S; Liu YY; Liu LJ; Hu QX
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25096-103. PubMed ID: 27607243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer.
    Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H
    Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Fabrication of Ready-to-Use Gelatin Scaffolds with Prevascular Networks Using Alginate Hollow Fibers as Sacrificial Templates.
    Li S; Wang K; Jiang X; Hu Q; Zhang C; Wang B
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2297-2311. PubMed ID: 33455307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of Induced Hypoxic Regions in Depth of 3D Porous Silk Scaffolds by the Introduction of Channel Configuration.
    Tabesh H; Elahi Z; Amoabediny Z; Rafiei F
    Biomed Res Int; 2022; 2022():9767687. PubMed ID: 35342757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue.
    Gu J; Zhang Q; Geng M; Wang W; Yang J; Khan AUR; Du H; Sha Z; Zhou X; He C
    Bioact Mater; 2021 Oct; 6(10):3254-3268. PubMed ID: 33778203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.
    Huling J; Ko IK; Atala A; Yoo JJ
    Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Hierarchical Silk Fibroin Structures.
    Sommer MR; Schaffner M; Carnelli D; Studart AR
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.