These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. CD38 in the age of COVID-19: a medical perspective. Horenstein AL; Faini AC; Malavasi F Physiol Rev; 2021 Oct; 101(4):1457-1486. PubMed ID: 33787351 [TBL] [Abstract][Full Text] [Related]
3. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Henning RJ; Bourgeois M; Harbison RD Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072 [TBL] [Abstract][Full Text] [Related]
4. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Jafarzadeh A; Jafarzadeh S; Nozari P; Mokhtari P; Nemati M Scand J Immunol; 2021 Feb; 93(2):e12967. PubMed ID: 32875598 [TBL] [Abstract][Full Text] [Related]
5. Implications of the NADase CD38 in COVID pathophysiology. Zeidler JD; Kashyap S; Hogan KA; Chini EN Physiol Rev; 2022 Jan; 102(1):339-341. PubMed ID: 34494892 [TBL] [Abstract][Full Text] [Related]
6. Dynamic SARS-CoV-2-Specific Immunity in Critically Ill Patients With Hypertension. Zeng Q; Li YZ; Dong SY; Chen ZT; Gao XY; Zhang H; Huang G; Xu Y Front Immunol; 2020; 11():596684. PubMed ID: 33362779 [TBL] [Abstract][Full Text] [Related]
7. Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. Omran HM; Almaliki MS J Infect Public Health; 2020 Sep; 13(9):1196-1201. PubMed ID: 32534944 [TBL] [Abstract][Full Text] [Related]
8. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. Inageda K; Takahashi K; Tokita K; Nishina H; Kanaho Y; Kukimoto I; Kontani K; Hoshino S; Katada T J Biochem; 1995 Jan; 117(1):125-31. PubMed ID: 7775378 [TBL] [Abstract][Full Text] [Related]
10. The Many Faces of Innate Immunity in SARS-CoV-2 Infection. Hanan N; Doud RL; Park IW; Jones HP; Mathew SO Vaccines (Basel); 2021 Jun; 9(6):. PubMed ID: 34199761 [TBL] [Abstract][Full Text] [Related]
11. The Immune Response and Effectiveness of COVID-19 Therapies. Tavasolian F; Hatam GR; Mosawi SH; Saadi MI; Abdollahi E; Jamialahmadi T; Sathyapalan T; Sahebkar A Adv Exp Med Biol; 2021; 1321():115-126. PubMed ID: 33656718 [TBL] [Abstract][Full Text] [Related]
12. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Gutiérrez-Bautista JF; Rodriguez-Nicolas A; Rosales-Castillo A; Jiménez P; Garrido F; Anderson P; Ruiz-Cabello F; López-Ruz MÁ Front Immunol; 2020; 11():596553. PubMed ID: 33324414 [TBL] [Abstract][Full Text] [Related]
13. NK cells in SARS-CoV-2 infection. Pituch-Noworolska AM Cent Eur J Immunol; 2022; 47(1):95-101. PubMed ID: 35600151 [TBL] [Abstract][Full Text] [Related]
14. Storm at the Time of Corona: A Glimpse at the Current Understanding and Therapeutic Opportunities of the SARS-CoV-2 Cytokine Storm. Torabi-Rahvar M; Rezaei N Curr Pharm Des; 2021; 27(13):1549-1552. PubMed ID: 33238863 [TBL] [Abstract][Full Text] [Related]
15. SARS-CoV-2 and HIV-1: So Different yet so Alike Demoliou C; Papaneophytou C; Nicolaidou V Int J Med Sci; 2022; 19(12):1787-1795. PubMed ID: 36313221 [TBL] [Abstract][Full Text] [Related]
16. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Li S; Zhang Y; Guan Z; Li H; Ye M; Chen X; Shen J; Zhou Y; Shi ZL; Zhou P; Peng K Signal Transduct Target Ther; 2020 Oct; 5(1):235. PubMed ID: 33037188 [TBL] [Abstract][Full Text] [Related]
17. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. Conti P; Caraffa A; Gallenga CE; Kritas SK; Frydas I; Younes A; Di Emidio P; Tetè G; Pregliasco F; Ronconi G J Biol Regul Homeost Agents; 2021; 35(1):1-4. PubMed ID: 33377359 [TBL] [Abstract][Full Text] [Related]
18. Multiple Sclerosis Disease-Modifying Therapy and the COVID-19 Pandemic: Implications on the Risk of Infection and Future Vaccination. Zheng C; Kar I; Chen CK; Sau C; Woodson S; Serra A; Abboud H CNS Drugs; 2020 Sep; 34(9):879-896. PubMed ID: 32780300 [TBL] [Abstract][Full Text] [Related]
19. Autophagy Hijacking in PBMC From COVID-19 Patients Results in Lymphopenia. Barbati C; Celia AI; Colasanti T; Vomero M; Speziali M; Putro E; Buoncuore G; Savino F; Colafrancesco S; Ucci FM; Ciancarella C; Balbinot E; Scarpa S; Natalucci F; Pellegrino G; Ceccarelli F; Spinelli FR; Mastroianni CM; Conti F; Alessandri C Front Immunol; 2022; 13():903498. PubMed ID: 35711451 [TBL] [Abstract][Full Text] [Related]
20. Transient Lymphopenia and Interstitial Pneumonia With Endotheliitis in SARS-CoV-2-Infected Macaques. Koo BS; Oh H; Kim G; Hwang EH; Jung H; Lee Y; Kang P; Park JH; Ryu CM; Hong JJ J Infect Dis; 2020 Oct; 222(10):1596-1600. PubMed ID: 32745172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]