BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 35386677)

  • 1. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W
    Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Wheat Powdery Mildew Based on Hyperspectral, Thermal Infrared, and RGB Image Data Fusion.
    Feng Z; Song L; Duan J; He L; Zhang Y; Wei Y; Feng W
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content.
    Zhang J; Zhang W; Xiong S; Song Z; Tian W; Shi L; Ma X
    Plant Methods; 2021 Mar; 17(1):34. PubMed ID: 33789711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy Vegetation Indices from
    Feng W; Qi S; Heng Y; Zhou Y; Wu Y; Liu W; He L; Li X
    Front Plant Sci; 2017; 8():1219. PubMed ID: 28751904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Multivariate Statistical Technique Based on the Effective Spectra Bands to Estimate the Plant Water Content of Wheat Under Different Irrigation Regimes.
    Sun H; Feng M; Xiao L; Yang W; Ding G; Wang C; Jia X; Wu G; Zhang S
    Front Plant Sci; 2021; 12():631573. PubMed ID: 33719305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning.
    Dhakal R; Maimaitijiang M; Chang J; Caffe M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inversion of soil water and salt information based on UAV hyperspectral remote sensing and machine lear-ning.
    Wang YJ; Ding QD; Zhang JH; Chen R; Jia K; Li XL
    Ying Yong Sheng Tai Xue Bao; 2023 Nov; 34(11):3045-3052. PubMed ID: 37997416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy.
    Wei L; Yuan Z; Yu M; Huang C; Cao L
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510072
    [No Abstract]   [Full Text] [Related]  

  • 11. Discrimination of wheat flour grade based on PSO-SVM of hyperspectral technique.
    Zhang S; Yin Y; Liu C; Li J; Sun X; Wu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123050. PubMed ID: 37379715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral imaging combined with GA-SVM for maize variety identification.
    Zhang F; Wang M; Zhang F; Xiong Y; Wang X; Ali S; Zhang Y; Fu S
    Food Sci Nutr; 2024 May; 12(5):3177-3187. PubMed ID: 38726456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rapid detection technology of chemical component content in Lycii Fructus based on hyperspectral technology].
    Liu LL; Wang YY; Yang J; Zhang XB
    Zhongguo Zhong Yao Za Zhi; 2023 Aug; 48(16):4328-4336. PubMed ID: 37802859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cucumber powdery mildew detection method based on hyperspectra-terahertz.
    Zhang X; Wang P; Wang Y; Hu L; Luo X; Mao H; Shen B
    Front Plant Sci; 2022; 13():1035731. PubMed ID: 36247642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Leaf-Scale Wheat Powdery Mildew (
    Zhao J; Fang Y; Chu G; Yan H; Hu L; Huang L
    Plants (Basel); 2020 Jul; 9(8):. PubMed ID: 32722022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperspectral-based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables.
    Fan L; Zhao J; Xu X; Liang D; Yang G; Feng H; Yang H; Wang Y; Chen G; Wei P
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31262053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Grain yield estimation of wheat-maize rotation cultivated land based on Sentinel-2 multi-spectral image: A case study in Caoxian County, Shandong, China].
    Chen Y; Zhao GX; Chang CY; Wang ZR; Li YS; Zhao HS; Zhang SW; Pan JR
    Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3347-3356. PubMed ID: 38511374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery.
    Zhang J; Pu R; Yuan L; Wang J; Huang W; Yang G
    PLoS One; 2014; 9(4):e93107. PubMed ID: 24691435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry.
    Yang X; Bao N; Li W; Liu S; Fu Y; Mao Y
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface.
    Zhang L; Rao Z; Ji H
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.