BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

648 related articles for article (PubMed ID: 35386842)

  • 21. Mitochondrial Redox Signaling and Tumor Progression.
    Chen Y; Zhang H; Zhou HJ; Ji W; Min W
    Cancers (Basel); 2016 Mar; 8(4):. PubMed ID: 27023612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms.
    Sachdev S; Ansari SA; Ansari MI; Fujita M; Hasanuzzaman M
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33670123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen species and redox compartmentalization.
    Kaludercic N; Deshwal S; Di Lisa F
    Front Physiol; 2014; 5():285. PubMed ID: 25161621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role.
    Zuo J; Zhang Z; Li M; Yang Y; Zheng B; Wang P; Huang C; Zhou S
    Mol Cancer; 2022 Jan; 21(1):30. PubMed ID: 35081965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Oxidative stress in human diseases].
    Djordjević VB; Zvezdanović L; Cosić V
    Srp Arh Celok Lek; 2008 May; 136 Suppl 2():158-65. PubMed ID: 18924487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases.
    Gong YY; Luo JY; Wang L; Huang Y
    Antioxid Redox Signal; 2018 Oct; 29(11):1092-1107. PubMed ID: 28969427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial ROS and cancer drug resistance: Implications for therapy.
    Okon IS; Zou MH
    Pharmacol Res; 2015 Oct; 100():170-4. PubMed ID: 26276086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual roles of vascular-derived reactive oxygen species--with a special reference to hydrogen peroxide and cyclophilin A.
    Satoh K; Godo S; Saito H; Enkhjargal B; Shimokawa H
    J Mol Cell Cardiol; 2014 Aug; 73():50-6. PubMed ID: 24406688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body.
    Bardaweel SK; Gul M; Alzweiri M; Ishaqat A; ALSalamat HA; Bashatwah RM
    Eurasian J Med; 2018 Oct; 50(3):193-201. PubMed ID: 30515042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput screening of cellular redox sensors using modern redox proteomics approaches.
    Jiang J; Wang K; Nice EC; Zhang T; Huang C
    Expert Rev Proteomics; 2015; 12(5):543-55. PubMed ID: 26184698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of reactive oxygen species in myocardial redox signaling and regulation.
    Moris D; Spartalis M; Tzatzaki E; Spartalis E; Karachaliou GS; Triantafyllis AS; Karaolanis GI; Tsilimigras DI; Theocharis S
    Ann Transl Med; 2017 Aug; 5(16):324. PubMed ID: 28861421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer.
    Emanuele S; D'Anneo A; Calvaruso G; Cernigliaro C; Giuliano M; Lauricella M
    Chem Res Toxicol; 2018 Apr; 31(4):201-210. PubMed ID: 29513521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radicals in the physiological control of cell function.
    Dröge W
    Physiol Rev; 2002 Jan; 82(1):47-95. PubMed ID: 11773609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative Stress.
    Sies H; Berndt C; Jones DP
    Annu Rev Biochem; 2017 Jun; 86():715-748. PubMed ID: 28441057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox.
    Moris D; Spartalis M; Spartalis E; Karachaliou GS; Karaolanis GI; Tsourouflis G; Tsilimigras DI; Tzatzaki E; Theocharis S
    Ann Transl Med; 2017 Aug; 5(16):326. PubMed ID: 28861423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Peroxisome-Autophagy Redox Connection: A Double-Edged Sword?
    Li H; Lismont C; Revenco I; Hussein MAF; Costa CF; Fransen M
    Front Cell Dev Biol; 2021; 9():814047. PubMed ID: 34977048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both?
    Shi T; Dansen TB
    Antioxid Redox Signal; 2020 Oct; 33(12):839-859. PubMed ID: 32151151
    [No Abstract]   [Full Text] [Related]  

  • 39. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective.
    Monteiro HP; Rodrigues EG; Amorim Reis AKC; Longo LS; Ogata FT; Moretti AIS; da Costa PE; Teodoro ACS; Toledo MS; Stern A
    Nitric Oxide; 2019 Aug; 89():1-13. PubMed ID: 31009708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.
    He L; He T; Farrar S; Ji L; Liu T; Ma X
    Cell Physiol Biochem; 2017; 44(2):532-553. PubMed ID: 29145191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.