These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35386984)

  • 1. Aeroallergens and Climate Change in Tulsa, Oklahoma: Long-Term Trends in the South Central United States.
    Levetin E
    Front Allergy; 2021; 2():726445. PubMed ID: 35386984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 50 Years of Pollen Monitoring in Basel (Switzerland) Demonstrate the Influence of Climate Change on Airborne Pollen.
    Gehrig R; Clot B
    Front Allergy; 2021; 2():677159. PubMed ID: 35387022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development.
    Howard LE; Levetin E
    Ann Allergy Asthma Immunol; 2014 Dec; 113(6):641-6. PubMed ID: 25240331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: long-term trends, variability, and influence of meteorological conditions.
    Flonard M; Lo E; Levetin E
    Int J Biometeorol; 2018 Feb; 62(2):229-241. PubMed ID: 28917013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Pollen Monitoring in the Benelux: Evaluation of Allergenic Pollen Levels and Temporal Variations of Pollen Seasons.
    de Weger LA; Bruffaerts N; Koenders MMJF; Verstraeten WW; Delcloo AW; Hentges P; Hentges F
    Front Allergy; 2021; 2():676176. PubMed ID: 35387026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health.
    Schramm PJ; Brown CL; Saha S; Conlon KC; Manangan AP; Bell JE; Hess JJ
    Int J Biometeorol; 2021 Oct; 65(10):1615-1628. PubMed ID: 33877430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.
    Zhang Y; Bielory L; Georgopoulos PG
    Int J Biometeorol; 2014 Jul; 58(5):909-19. PubMed ID: 23793955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of weather and climate on pollen concentrations in Denver, Colorado, 2010-2018.
    Gross L; Weber R; Wolf M; Crooks JL
    Ann Allergy Asthma Immunol; 2019 Nov; 123(5):494-502.e4. PubMed ID: 31401104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term pollen trends and associations between pollen phenology and seasonal climate in Atlanta, Georgia (1992-2018).
    Manangan A; Brown C; Saha S; Bell J; Hess J; Uejio C; Fineman S; Schramm P
    Ann Allergy Asthma Immunol; 2021 Oct; 127(4):471-480.e4. PubMed ID: 34311074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allergenic pollen season variations in the past two decades under changing climate in the United States.
    Zhang Y; Bielory L; Mi Z; Cai T; Robock A; Georgopoulos P
    Glob Chang Biol; 2015 Apr; 21(4):1581-9. PubMed ID: 25266307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae.
    Adams-Groom B; Selby K; Derrett S; Frisk CA; Pashley CH; Satchwell J; King D; McKenzie G; Neilson R
    Sci Total Environ; 2022 Jul; 831():154882. PubMed ID: 35364159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne pollen calendar of Portugal: a 15-year survey (2002-2017).
    Camacho I; Caeiro E; Nunes C; Morais-Almeida M
    Allergol Immunopathol (Madr); 2020; 48(2):194-201. PubMed ID: 31601498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate sensitivity of allergenic taxa in Central Europe associated with new climate change related forces.
    Deák AJ; Makra L; Matyasovszky I; Csépe Z; Muladi B
    Sci Total Environ; 2013 Jan; 442():36-47. PubMed ID: 23178762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991-2008.
    Myszkowska D; Jenner B; Stępalska D; Czarnobilska E
    Aerobiologia (Bologna); 2011 Sep; 27(3):229-238. PubMed ID: 21892249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Quercus flowering trends in NW Spain.
    Jato V; Rodríguez-Rajo FJ; Fernandez-González M; Aira MJ
    Int J Biometeorol; 2015 May; 59(5):517-31. PubMed ID: 25108375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).
    Mercuri AM; Torri P; Fornaciari R; Florenzano A
    Plants (Basel); 2016 Dec; 5(4):. PubMed ID: 27929423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland).
    Bogawski P; Grewling L; Nowak M; Smith M; Jackowiak B
    Int J Biometeorol; 2014 Oct; 58(8):1759-68. PubMed ID: 24402307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study.
    Sofia G; Emma T; Veronica T; Giuseppe F
    Int J Biometeorol; 2017 Jan; 61(1):149-158. PubMed ID: 27329325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, north-western Poland, using Gumbel's distribution.
    Puc M; Wolski T
    Ann Agric Environ Med; 2013; 20(1):36-47. PubMed ID: 23540210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models for forecasting airborne Cupressaceae pollen levels in central Spain.
    Sabariego S; Cuesta P; Fernández-González F; Pérez-Badia R
    Int J Biometeorol; 2012 Mar; 56(2):253-8. PubMed ID: 21448770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.