These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35387229)

  • 1. Multi-strategy engineering unusual sugar TDP-l-mycarose biosynthesis to improve the production of 3-
    Liu Z; Xu J; Feng Z; Wang Y
    Synth Syst Biotechnol; 2022 Jun; 7(2):756-764. PubMed ID: 35387229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolically engineered Escherichia coli for efficient production of glycosylated natural products.
    Peirú S; Rodríguez E; Menzella HG; Carney JR; Gramajo H
    Microb Biotechnol; 2008 Nov; 1(6):476-86. PubMed ID: 21261868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli.
    Peirú S; Menzella HG; Rodríguez E; Carney J; Gramajo H
    Appl Environ Microbiol; 2005 May; 71(5):2539-47. PubMed ID: 15870344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-stage one-pot enzymatic synthesis of TDP-L-mycarose from thymidine and glucose-1-phosphate.
    Takahashi H; Liu YN; Liu HW
    J Am Chem Soc; 2006 Feb; 128(5):1432-3. PubMed ID: 16448097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli.
    Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y
    ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the heterodimeric MegBIIa:MegBIIb aldo-keto reductase involved in the biosynthesis of L-mycarose from Micromonospora megalomicea.
    Peirú S; Rodríguez E; Tran CQ; Carney JR; Gramajo H
    Biochemistry; 2007 Jul; 46(27):8100-9. PubMed ID: 17571859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved E. coli erythromycin A production through the application of metabolic and bioprocess engineering.
    Zhang H; Skalina K; Jiang M; Pfeifer BA
    Biotechnol Prog; 2012; 28(1):292-6. PubMed ID: 21905273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of the dTDP-rhamnose biosynthesis region of the Escherichia coli VW187 (O7:K1) rfb gene cluster: identification of functional homologs of rfbB and rfbA in the rff cluster and correct location of the rffE gene.
    Marolda CL; Valvano MA
    J Bacteriol; 1995 Oct; 177(19):5539-46. PubMed ID: 7559340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered EryF hydroxylase improving heterologous polyketide erythronolide B production in Escherichia coli.
    Liu Z; Xu J; Liu H; Wang Y
    Microb Biotechnol; 2022 May; 15(5):1598-1609. PubMed ID: 35174640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production.
    Cress BF; Leitz QD; Kim DC; Amore TD; Suzuki JY; Linhardt RJ; Koffas MA
    Microb Cell Fact; 2017 Jan; 16(1):10. PubMed ID: 28095853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies.
    Jiang P; Fang H; Zhao J; Dong H; Jin Z; Zhang D
    Microb Cell Fact; 2020 Jun; 19(1):118. PubMed ID: 32487216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.
    Kunjapur AM; Hyun JC; Prather KL
    Microb Cell Fact; 2016 Apr; 15():61. PubMed ID: 27067813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of TDP-l-mycarose: the specificity of a single enzyme governs the outcome of the pathway.
    Takahashi H; Liu YN; Chen H; Liu HW
    J Am Chem Soc; 2005 Jul; 127(26):9340-1. PubMed ID: 15984840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic engineering of Escherichia coli to improve L-phenylalanine production.
    Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D
    BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the biosynthesis of taxadien-5α-yl-acetate in Escherichia coli by combinatorial metabolic engineering approaches.
    Xie WL; Zhang MF; Huang ZY; Xu M; Li CX; Xu JH
    Bioresour Bioprocess; 2024 May; 11(1):50. PubMed ID: 38753083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.