These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35387292)

  • 1. DWPPI: A Deep Learning Approach for Predicting Protein-Protein Interactions in Plants Based on Multi-Source Information With a Large-Scale Biological Network.
    Pan J; You ZH; Li LP; Huang WZ; Guo JX; Yu CQ; Wang LP; Zhao ZY
    Front Bioeng Biotechnol; 2022; 10():807522. PubMed ID: 35387292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Protein-Protein Interactions in
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Guan YJ
    Front Genet; 2021; 12():745228. PubMed ID: 34616437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CPIELA: Computational Prediction of Plant Protein-Protein Interactions by Ensemble Learning Approach From Protein Sequences and Evolutionary Information.
    Li LP; Zhang B; Cheng L
    Front Genet; 2022; 13():857839. PubMed ID: 35360876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Based Prediction of Plant Protein-Protein Interactions by Combining Discrete Sine Transformation With Rotation Forest.
    Pan J; Li LP; Yu CQ; You ZH; Guan YJ; Ren ZH
    Evol Bioinform Online; 2021; 17():11769343211050067. PubMed ID: 34671178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana.
    Zheng J; Yang X; Huang Y; Yang S; Wuchty S; Zhang Z
    Plant J; 2023 May; 114(4):984-994. PubMed ID: 36919205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of protein-protein interactions in model plant proteomes.
    Ding Z; Kihara D
    Sci Rep; 2019 Jun; 9(1):8740. PubMed ID: 31217453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BNEMDI: A Novel MicroRNA-Drug Interaction Prediction Model Based on Multi-Source Information With a Large-Scale Biological Network.
    Guan YJ; Yu CQ; Li LP; You ZH; Ren ZH; Pan J; Li YC
    Front Genet; 2022; 13():919264. PubMed ID: 35910223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks.
    Xu W; Gao Y; Wang Y; Guan J
    BMC Bioinformatics; 2021 Oct; 22(Suppl 6):485. PubMed ID: 34625020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KGDCMI: A New Approach for Predicting circRNA-miRNA Interactions From Multi-Source Information Extraction and Deep Learning.
    Wang XF; Yu CQ; Li LP; You ZH; Huang WZ; Li YC; Ren ZH; Guan YJ
    Front Genet; 2022; 13():958096. PubMed ID: 36051691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.
    Huang YA; You ZH; Chen X; Yan GY
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of human-virus protein-protein interactions through a sequence embedding-based machine learning method.
    Yang X; Yang S; Li Q; Wuchty S; Zhang Z
    Comput Struct Biotechnol J; 2020; 18():153-161. PubMed ID: 31969974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.
    You ZH; Lei YK; Zhu L; Xia J; Wang B
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S10. PubMed ID: 23815620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification.
    Zhou L; Duan Q; Tian X; Xu H; Tang J; Peng L
    BMC Bioinformatics; 2021 Nov; 22(1):568. PubMed ID: 34836494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
    Sahu SS; Weirick T; Kaundal R
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S13. PubMed ID: 25350354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.