These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35387295)

  • 1. Feasibility of Specular Reflection Imaging for Extraction of Neck Vessel Pressure Waveforms.
    Saiko G; Burton T; Douplik A
    Front Bioeng Biotechnol; 2022; 10():830231. PubMed ID: 35387295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Development of Specular Reflection Vascular Imaging.
    Burton T; Saiko G; Douplik A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-contact Quantification of Jugular Venous Pulse Waveforms from Skin Displacements.
    Lam Po Tang EJ; HajiRassouliha A; Nash MP; Nielsen PMF; Taberner AJ; Cakmak YO
    Sci Rep; 2018 Nov; 8(1):17236. PubMed ID: 30467407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Importance of Posture and Skin-Site Selection on Remote Measurements of Neck Pulsations: An Ultrasonographic Study.
    Moco A; Hamelmann P; Stuijk S; de Haan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5918-5921. PubMed ID: 30441683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting the Jugular Venous Pulse from Anterior Neck Contact Photoplethysmography.
    García-López I; Rodriguez-Villegas E
    Sci Rep; 2020 Feb; 10(1):3466. PubMed ID: 32103056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personalized physiologic flow waveforms improve wave reflection estimates compared to triangular flow waveforms in adults.
    Shenouda N; Stock JM; Patik JC; Chirinos JA; Edwards DG
    Am J Physiol Heart Circ Physiol; 2021 May; 320(5):H1802-H1812. PubMed ID: 33710924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-contact measurement of neck pulses achieved by imaging micro-motions in the neck skin.
    He Q; Geng W; Li W; Wang RK
    Biomed Opt Express; 2023 Sep; 14(9):4507-4519. PubMed ID: 37791270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of blood motion in the internal jugular vein by contact and contactless photoplethysmography during physiological testing: case studies.
    Saiko G; Burton T; Kakihana Y; Hatanaka K; Takahito O; Douplik A
    Biomed Opt Express; 2024 Apr; 15(4):2578-2589. PubMed ID: 38633071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Camera-based assessment of arterial stiffness and wave reflection parameters from neck micro-motion.
    Moço AV; Mondragon LZ; Wang W; Stuijk S; de Haan G
    Physiol Meas; 2017 Jul; 38(8):1576-1598. PubMed ID: 28671872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Feasibility of Pulse Wave Velocity Imaging for Remote Assessment of Physiological Functions.
    Saiko G; Dervenis M; Douplik A
    Adv Exp Med Biol; 2021; 1269():393-397. PubMed ID: 33966248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotid artery and jugular vein invasion of oral-maxillofacial and neck malignant tumors: diagnostic value of computed tomography.
    Yu Q; Wang P; Shi H; Luo J
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2003 Sep; 96(3):368-72. PubMed ID: 12973296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-contact quantification of aortic stenosis and mitral regurgitation using carotid waveforms from skin displacements.
    Khwaounjoo P; Dixon AW; HajiRassouliha A; Lam Po Tang EJ; Webster MWI; Taberner AJ; Nielsen PMF; Nash MP; Cakmak YO
    Physiol Meas; 2023 Sep; 44(9):. PubMed ID: 37478870
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultrasound detection of altered placental vascular morphology based on hemodynamic pulse wave reflection.
    Rahman A; Zhou YQ; Yee Y; Dazai J; Cahill LS; Kingdom J; Macgowan CK; Sled JG
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H1021-H1029. PubMed ID: 28364018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and applicability of non-invasive evaluation of aortic wave intensity using only pressure waveforms in humans.
    Aghilinejad A; Amlani F; Liu J; Pahlevan NM
    Physiol Meas; 2021 Nov; 42(10):. PubMed ID: 34521071
    [No Abstract]   [Full Text] [Related]  

  • 15. Noninvasive measurement of central venous pressure by neck inductive plethysmography.
    Bloch KE; Krieger BP; Sackner MA
    Chest; 1991 Aug; 100(2):371-5. PubMed ID: 1864108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms.
    Yang TH; Jo G; Koo JH; Woo SY; Kim JU; Kim YM
    Biomed Eng Online; 2019 Jan; 18(1):1. PubMed ID: 30602383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plethysmography System to Monitor the Jugular Venous Pulse: A Feasibility Study.
    Proto A; Conti D; Menegatti E; Taibi A; Gadda G
    Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of dual Doppler velocity measurements to estimate volume pulsations of an arterial segment.
    Hartley CJ; Reddy AK; Madala S; Entman ML; Taffet GE
    Ultrasound Med Biol; 2010 Jul; 36(7):1169-75. PubMed ID: 20620703
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.